THERMAL SCIENCE
International Scientific Journal
ADOMIAN-PADé APPROXIMATE SOLUTIONS TO THE CONFORMABLE NONLINEAR HEAT TRANSFER EQUATION
ABSTRACT
This paper adopts the Adomian decomposition method and the Padé approximation technique to derive the approximate solutions of a conformable heat transfer equation by considering the new definition of the Adomian polynomials (APs). The Padé approximate solutions are derived along with interesting figures showing the approximate solutions.
KEYWORDS
PAPER SUBMITTED: 2018-11-11
PAPER REVISED: 2018-11-20
PAPER ACCEPTED: 2019-01-11
PUBLISHED ONLINE: 2019-03-09
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 1, PAGES [S235 - S242]
- Whitham, G.B., Linear and Nonlinear Waves, John Wiley, New York, 1974
- Ferziger, J.H., A note on numerical accuracy, Int. J. Num. M. in fluids, 8 (1988), pp. 995-996
- Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
- Yang, X.J., Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, USA, 2012
- Khalil . R., et al., A new definition of fractional derivativ, J. Comput. Appl. Mat., 264 (2014), pp. 65-70
- Wang, K.L. and Liu, Y., He's fractional derivative for nonlinear fractional heat transfer equation, Thermal Science, 20 (2016), pp. 793-796
- Zhang. M. F., Liu, Y.Q., Zhou, X.Z., Efficient homotopy perturbation method for fractional nonlinear equations using Sumudu transform, Thermal Science, 19 (2015), pp. 1167-1171
- Ma . H.C., et al., Exact solutions of nonlinear fractional partial differential equations by fractional sub-equation method, Thermal Science, 19 (2015), pp.1239-1244
- Lin. Y., et al., Symbolic computation of analytic approximate solutions for nonlinear fractional differential equations, Computer Physics Communications, 184 (2013), pp.130-141
- Rach. R., A new definition of the Adomian polynomials, Kybernetes, 37 (2008), pp. 910-955
- Hosseini M., et al., On the convergence of Adomian decomposition method, Applied Mathematics and Computation, 182 (2006), pp. 536-543
- Wu. G., Adomian decomposition method for non-smooth initial value problems, Mathematical and Computer Modelling, 54 (2011), pp. 2104-2108
- Qin. Z., et al., Analytic study of solitons in non-kerr nonlinear negative index materials, Nonlinear Dynamics, 86 (2016), pp. 623-638
- Mirzazadeh. M, et al., Optical solitons with complex Ginzburg-Landau equation, Nonlinear Dynamics, 85 (2016), pp. 1979-2016
- Bo. L., et al., Soliton interactions for optical switching systems with symbolic computations, Optik, 175 (2018), pp.177-180
- Zubair. A., et al., Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities, Optik, 173 (2018), pp. 249-262
- Weitian. Y., et al., Periodic oscillations of dark solitons in nonlinear optics, Optik, 165 (2018), pp. 341-344
- Zhou, Q., et al., Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion, Nonlinear Dynamics, 80 (2015), pp. 983-987
- Zhou, Q., Optical solitons for Biswas-Milovic model with Kerr law and parabolic law nonlinearities, Nonlinear Dynamics, 84 (2016), pp. 677-681
- Triki, H., et al., Chirped dark solitons in optical metametarials, Optik, 158 (2018), pp. 312-315