THERMAL SCIENCE
International Scientific Journal
FICITIOUS TIME INTEGRATION METHOD FOR SOLVING THE TIME FRACTIONAL GAS DYNAMICS EQUATION
ABSTRACT
In this work a powerful approach is presented to solve the time-fractional gas dynamics equation. In fact, we use a fictitious time variable y to convert the dependent variable w(x; t) into a new one with one more dimension. Then by taking a initial guess and implementing the group preserving scheme we solve the problem. Finally four examples are solved to illustrate the power of the offered method.
KEYWORDS
PAPER SUBMITTED: 2019-04-21
PAPER REVISED: 2019-08-02
PAPER ACCEPTED: 2019-08-09
PUBLISHED ONLINE: 2019-10-06
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 6, PAGES [S2009 - S2016]
- F. Mainardi Carpinteri, Fractals and fractional calculus in continuum mechanics, in: A. Carpinteri, F. Mainardi (Eds.),Springer Verlag, Wien, New York, 1997, pp. 277-290.
- K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, Rivista Del Nuovo Cimento 1 (1971) 161-198.
- K.B. Oldham, J. Spanier, The Fractional Calculus. Integrations and Differentiations of Arbitrary Order, Academic Press, New York, 1974
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, The Netherlands, 2006.
- R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, 2000.
- G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2005.
- R.L. Magin, Fractional Calculus in Bio-engineering, Begell House Publisher, Inc., Connecticut, 2006.
- R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, SpringerVerlag, New York, 1997.
- M. S. Hashemi, D. Baleanu and M. Parto-Haghighi, A lie group approach to solve the fractional poisson equation, Rom. J. Phys. 60 , 1289-1297,(2015).
- Mir sajjad hashemi, Dumitru Baleanu, Mohammad Parto-hghighi and Elham Darvishi, THERMAL SCIENCE, Year , Vol. 19, Suppl. 1, pp. S77-S83, 2015.
- A.S.V. RaviKanth, K. Aruna, Differential transform method for solving the linear and nonlinear Klein-Gordon equation, Comput. Phys. Commun. 180 (5) 708-711, (2009) .
- A.S.V. RaviKanth, K. Aruna, Differential transform method for solving linear and non-linear systems of partial differential equations, Phys. Lett. A 372 (46), 6896-6898 (17),(2008) .
- A.S.V. RaviKanth, K. Aruna, Two-dimensional differential transform method for solving linear and non-linear Schro dinger equations, Chaos, Solitons Fract. 41 (5), 2277-2281, (2009).
- S. Kumar, Om P. Singh, Numerical inversion of the abel integral equation using homotopy perturbation method, Z Naturforsch 65a , 677-682,(2010).
- S. Kumar, H. Kocak, A. Yildirim, A fractional model of gas dynamics equation by using Laplace transform, Z Naturforsch 67, 389-396, (2012) .
- S. Kumar, A numerical study for solution of time fractional nonlinear shallow-water equation in oceans, Z Naturforsch A 68a , 1-7,(2013).
- S. Kumar, Numerical computation of time-fractional FokkerPlanck equation arising in solid state physics and circuit theory, Z Naturforsch 68a 1-8,(2013).
- H. Jafari, C. Chun, S. Seifi, M. Saeidy, Analytical solution for nonlinear gas dynamics equation by homotopy analysis method, Appl. Appl. Math. 4 (1) 149-154, (2009) .
- A.J.M. Jawad, M.D. Petkovic, A. Biswas, Applications of Hes principles to partial differential equations, Appl. Math. Comput. 217 (2011) 7039-7047.
- T.G. Elizarova, Quasi gas dynamics equations, Comput. Fluid Solid Mech., Springer Verlag, 2009, ISBN 978-3-642- 00291-5.
- D.J. Evans, H. Bulut, A new approach to the gas dynamics equation: an application of the decomposition method, Int. J. Comput. Math. 79 (7) 817-822, (2002).
- J.L. Steger, R.F. Warming, Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. Comput. Phys. 40 (2) 263-293, (1981).
- A. Aziz, D. Anderson, The use of pocket computer in gas dynamics, Comput. Educat. 9 (1) (1985) 41-56.
- M. Rasulov, T. Karaguler, Finite difference scheme for solving system equation of gas dynamics in a class of discontinuous function, Appl. Math. Comput. 143 (1) (2003) 145-164.
- T.P. Liu, Nonlinear Waves in Mechanics and Gas Dynamics. Defense Technical Information Center, Accession Number: ADA 238-340, 1990.
- Tamsir M, Srivastava VK. Revisiting the approximate analytical solution of fractional-order gas dynamics equation. Alexandria Eng ;55(2):867-74, J 2016.
- J. Biazar, M. Eslami, Differential transform method for nonlinear fractional gas dynamics equation, Inter. J. Phys. Sci. 6 (5) 12-03,(2011).
- S. Das, R. Kumar, Approximate analytical solutions of fractional gas dynamics, Appl. Math. Comput. 217 (24) 9905-9915, (2011).
- S. Kumar, M.M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun. 185 (7) 1947-1954,(2014) .
- Podlubny I. Fractional Differential Equations. New York: Academic Press; 1999.
- Debnath L. Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 2003;54:3413-42.
- Liu, C.-S., Solving an Inverse Sturm-Liouville Problem by a Lie-Group Method, Boundary Value Problems, (2008), 749-865,(2008).