THERMAL SCIENCE
International Scientific Journal
CATALYTIC OXIDATION OF METHANOL IN THE CENOSPHERIC FLUIDIZED BED
ABSTRACT
The process of oxidation of gaseous CH3OH by N2O was carried out over an Ag-Fe2O3-cenosphere catalyst whose structure can be defined as double shell-core catalyst. Preparation of the catalyst was carried out in two stages: thermal decomposition of Fe(CO)5 at above 160°C and then electroless Ag plating. The process of methanol degradation by N2O was carried out in a fluidized bed reactor. The study confirms that it is possible to achieve complete degradation of N2O and CH3OH for the obtained catalyst at above 450°C when the contact time of the reactants with the catalyst is approximately 6 second and when the substrates are used in stoichiometric ratios. More than 60% of the hydrogen contained in CH3OH can be converted to molecular hydrogen at 500°C with a ratio of N2O/CH3OH not greater than 0.6 and with a contact time of reactants with the catalyst of approx. 6 seconds.
KEYWORDS
PAPER SUBMITTED: 1970-01-01
PAPER REVISED: 2019-02-28
PAPER ACCEPTED: 2019-03-03
PUBLISHED ONLINE: 2019-09-22
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 4, PAGES [S1231 - S1240]
- Venkataramanan, M., et al. Causes and Effects of Global Warming, Indian Journal of Science and Technology, 4 (2011), 3, pp. 226-229
- ***, American Meteorological Society, Climate Change, www.ametsoc.org/ams/index.cfm/about-ams/ams-statements/statements-of-the-ams-in-force/climate-change/
- ***, US Environmental Protection Agency, Overview of Greenhouse Gases, www3.epa.gov/climatechange/ghgemissions/gases.html
- ***, US Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories, www.epa.gov/sites/production/files/2015-11/documents/emission-factors_nov_2015.pdf
- Zabilskiy, M., et al., N2O Decomposition Over CuO/CeO2 Catalyst: New Insights into Reaction Mechanism and Inhibiting Action of H2O and NO by Operando Techniques, Applied Catalysis B: Environmental, 197 (2016), Nov., pp. 146-158
- Ravinshakara, A. R., et al., Nitrous Oxide (N2O): the Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326 (2009), 5949, pp.123-125
- ***, European Environment Agency, Atmospheric Concentration of Nitrous Oxide (ppb), 2015 www.eea.europa.eu/data-and-maps/figures/atmospheric-concentration-of-n2o-ppb-1
- Abu-Zied, B. M., et al., Pure and Ni-Substituted Co3O4 Spinel Catalysts for Direct N2O Decomposition, Chinese Journal of Catalysis, 35 (2014), 7, pp. 1105-1112
- Zhang, B., et al., Role of Aggregated Fe Oxo Species in N2O Decomposition Over Fe/ZSM-5, Chinese Journal of Catalysis, 35 (2014), 12, pp. 1972-1981
- Ul-Ain B., et al., Catalytic Decomposition of N2O on Cobalt Substituted Barium Hexaferrites, Chinese Journal of Catalysis, 34 (2013), 7, pp. 13571362
- Wu, M., et al., Effects of Acid Pretreatment on Fe-ZSM-5 and Fe-Beta Catalysts for N2O Decomposi-tion, Chinese Journal of Catalysis, 37 (2016), 6, pp. 898-907
- Zhang, F., et al., Promotion by Co of a NiO-BaCO3 Catalyst for N2O Decomposition, Chinese Journal of Catalysis, 36 (2015), 3, pp. 344-347
- Pietrogiacomi, D., et al., N2O Decomposition on CoOx, CuOx, FeOx or MnOx Supported on ZrO2: The Effect of Zirconia Doping with Sulfates or K+ on Catalytic Activity, Applied Catalysis B: Environmental, 187 (2016), June, pp. 218-227
- Pachatouridou, E., et al., N2O Decomposition Over Ceria-Promoted Ir/Al2O3 Catalysts: The Role of Ceria, Applied Catalysis B: Environmental, 187 (2016), Jan., pp. 259-268
- Melian-Cabrera, I., et al., Tail Gas Catalyzed N2O Decomposition Over Fe-Beta Zeolite. On the Promot-ing Role of Framework Connected AlO6 Sites in the Vicinity of Fe by Controlled Dealumination During Exchange, Applied Catalysis B: Environmental, 203 (2017), Apr., pp. 218-226
- Yu, H., et al., Pb0.04Co Catalyst for N2O Decomposition in Presence of Impurity Gases, Applied Catalysis B: Environmental, 185 (2015), Dec., pp. 110-118
- Zabilskiy, M., et al., Small CuO Clusters on CeO2 Nanospheres as Active Species for Catalytic N2O Decomposition, Applied Catalysis B: Environmental, 163 (2015), Feb., pp. 113-122
- Franken, T., et al., Investigation Of Potassium Doped Mixed Spinels CuxCo3-xO4 as Catalysts for an Efficient N2O Decomposition in Real Reaction Conditions, Applied Catalysis B: Environmental, 176-177 (2015), Oct., pp. 298-305
- ***, U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990 - 2014, 1-558 Raport EPA 430-R-16-002, www.epa.gov/sites/production/files/2016-04/documents/us-ghg-inventory-2016-main-text.pdf
- Reimer, R. A, et al., Abatement of N2O Emissions Produced in the Adipic acid Industry, Environ. Prog., 13 (1994), 2, pp. 134-137
- Stefanova, M., et al. Technical Engineering for Catalytic Reduction of Nitrous Oxide Emissions, GSTF Journal of Engineering Technology (JET), 3 (2015), 2, pp. 89-94
- Castellan, A., et al., Industrial Production and Use of Adipic Acid, Cat. Today, 9 (1991), 3, pp. 237-254
- Perez-Ramirez, J., Prospects of N2O Emission Regulations in the European Fertilizer Industry, Applied Catalysis B: Environmental, 70 (2007), 1-4, pp. 31-35
- ***,AEA Technology Environment, Options to Reduce Nitrous Oxide Emissions (Final Report) A report produced for DGXI, 1998 ec.europa.eu/environment/enveco/climate_change/pdf/nitrous_oxide_emissions.pdf
- Held, A., et al., Propane-to-Propene Oxide Oxidation on Silica-Supported Vanadium, Journal of Catalysis, 336 (2016), Apr., pp. 23-32
- Woods, M. P., et al., Oxygen and Nitrous Oxide as Oxidants: Implications for Ethane Oxidative Dehy-drogenation over Silica-Titania-Supported Molybdenum, The Journal of Physical Chemistry C, 113 (2009), 23, pp. 10112-10119
- ***,United State Environmental Protection Agency, The original list of hazardous air pollutants. www3.epa.gov/airtoxics/188polls.html
- Jacob, D. J., et al., Global Budget of Methanol: Constraints from Atmospheric Observations, Journal of Geophysical Research, 110 (D08303) (2005) Apr., pp. 1-17
- Araiza, D. G., et al., Partial Oxidation of Methanol Over Copper Supported on Nanoshaped Ceria for Hydrogen Production, Catalysis Today, 282 (2017), 2, pp. 185-194
- Chen, W.-H., et al., Hydrogen Production from Methanol Partial Oxidation Over Pt/Al2O3 Catalyst with Low Pt Content, Energy, 88 (2015), Aug., pp. 399-407
- Chang, F. W., et al., Applied Catalysis A: General, 302 (2006), 2, pp. 157-167
- Tsoncheva, T., et al., Nanostructured Copper-Zirconia Composites as Catalysts for Methanol Decompo-sition, Applied Catalysis B: Environmental, 165 (2015), Apr., pp. 599-610
- Marban, G., et al., A Highly Active, Selective and stable Copper/Cobalt-Structured Nanocatalyst for Methanol Decomposition, Applied Catalysis B: Environmental, 99 (2010), 1-2, pp. 257-264
- Mo, L., et al., Selective Production of Hydrogen from Partial Oxidation of Methanol Over Supported Silver Catalysts Prepared by Method of Redox Coprecipitation, C. Today, 148 (2009), 1-2, pp. 124-129
- Tian, C., et al., Understanding of Physicochemical Properties and Formation Mechanisms of fine Particular Matter Generated from Canadian Coal Combustion, Fuel, 165 (2016), Feb., pp. 224-234
- Yao, Z. T., et al., A Comprehensive Review on the Applications of Coal Fly Ash, Earth-Science Reviews, 141 (2015), Feb., pp. 105-121
- Vassilev, S. V., et al., Phase-Mineral and Chemical Composition of Coal Fly Ashes as a Basis for their Multicomponent Utilization. 2. Characterization of Ceramic Cenosphere and Salt Concentrates, Fuel, 83 (2004), 4-5, pp. 585-603
- Aixiang, Z., et al., Electroless Ni-P Coating of Cenospheres Using Silver Nitrate Activator, Surface & Coatings Technology, 197 (2005), 2-3, pp. 142-147
- Li, Y., Ash Cenosphere Formation, Fragmentation and its Contribution to Particulate Matter Emission during Solid Fuels Combustion 2012, Ph. D. thesis, Department of Chemical Enginering, Curtin Univer-sity, Perth, western Australia, Australia
- Berkowicz, G., et al., Cenospheres as an Innovative Fluidised Bed Material, Technical Transactions Chemistry, 113 (2016), 1-Ch, pp. 3-10
- Berkowicz, G., et al. Oxidative Decomposition of Methanol in a Vibroacoustic Fluidized Bed of Ag-coated Cenosphere Core-shell Catalyst, Polish Journal of Chemical Technology, 18 (2016), 4, pp. 70-74
- Wang, P., et al., Deposition of Iron on Graphite Felts by Thermal Decomposition of Fe(CO)5 for Anodic Modification of Microbial Fuel Cells, International Journal of Electrochemical Science, 8 (2013), 4, pp. 4712-4722
- Bowker, M., et al., Methanol Oxidation on Fe2O3 Catalysts and the Effects of Surface Mo, Faraday Discussions, 188 (2016), July, pp. 387-398
- ***,National Toxicology Program, Department of Health and Human Services, Report on Carcinogens, Thirteenth Edition, Formaldehyde, ntp.niehs.nih.gov/ntp/roc/content/profiles/formaldehyde.pdf
- Wachs, I. E., et al., The Oxidation of Methanol on a Silver (110) Catalyst, Catalyst Surface Science, 76 (1978), 2, pp. 531-558
- Schwaner, A. L., et al., The Thermal and Electron-Induced Chemistry of N20/Ag(111), Surface Science, 351 (1996), 1-3, pp. 228-232