THERMAL SCIENCE

International Scientific Journal

A NEW FRACTIONAL DERIVATIVE MODEL FOR THE ANOMALOUS DIFFUSION PROBLEM

ABSTRACT
In this paper, a new fractional derivative within the exponential decay kernel is addressed for the first time. A new anomalous diffusion model is proposed to describe the heat-conduction problem. With the use of the Laplace transform, the analytical solution is discussed in detail. The presented result is as an accurate and efficient approach proposed for the heat-conduction problem in the complex phenomena.
KEYWORDS
PAPER SUBMITTED: 2018-09-12
PAPER REVISED: 2019-01-18
PAPER ACCEPTED: 2019-02-25
PUBLISHED ONLINE: 2019-06-08
DOI REFERENCE: https://doi.org/10.2298/TSCI180912253C
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Supplement 3, PAGES [S1005 - S1011]
REFERENCES
  1. Kilbas, A. A., et al., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006
  2. D Baleanu., et al., Fractional Calculus: Models and Numerical Methods, World Scientific, 2012
  3. Yang, X. J., et al., Local Fractional Integral Transforms and their Applications, Academic Press, 2015
  4. Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019.
  5. Chechkin, A. V., et al., Distributed Order Time Fractional Diffusion Equation, Fractional Calculus and Applied Analysis, 6(2003), 3, pp. 259-280
  6. Li, X., et al., A Space-Time Spectral Method for the Time Fractional Diffusion Equation, SIAM Journal on Numerical Analysis, 47(2009), 3, pp. 2108-2131
  7. Tejedor, V., et al., Anomalous Diffusion in Correlated Continuous Time Random Walks, Journal of Physics A: Mathematical and Theoretical, 43(2010), 8, 082002
  8. Mainardi, F., et al., The Wright Functions as Solutions of the Time-Fractional Diffusion Equation, Applied Mathematics and Computation, 141(2003), 1, pp. 51-62
  9. Yang, Q., et al., Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in two Dimensions, SIAM Journal on Scientific Computing, 33(2011), 3, pp. 1159-1180
  10. Liouville, J., Mmoire sur quelques Questions de Gomtrie et de Mcanique, et sur un nouveau genre de Calcul pour rsoudre ces Questions, Journal de lEcole Polytechnique, tome XIII, XXIe cahier, 1832, pp. 1-69
  11. Riemann, B., Versuch einer allgemeinen Auffassung der Integration und Differentiation, 14 Janvier 1847, Bernhard Riemanns Gesammelte Mathematische Werke, 1892, pp. 353-362
  12. Sonine, N., Sur la diffrentiation a indice quelconque, Matematicheskii Sbornik, 6(1872), 1, pp. 1-38
  13. Caputo, M., Linear Models of Dissipation Whose Q is almost Frequency IndependentII, Geophysical Journal International, 13(1967), 5, pp. 529-539
  14. Caputo, M., et al., A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl, 1(2015), 2, pp. 1-13
  15. Yang, X. J., et al., A New Fractional Derivative without Singular Kernel: Application to the Modelling of the Steady Heat Flow, Thermal Science, 2(2016), 20, pp. 753-756
  16. Prabhakar, T. R., A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel, Yokohama Mathematical Journal, 1(1971), 19, pp. 7-15

2025 Society of Thermal Engineers of Serbia. Published by the VinĨa Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence