THERMAL SCIENCE
International Scientific Journal
A NEW FRACTIONAL DERIVATIVE MODEL FOR THE ANOMALOUS DIFFUSION PROBLEM
ABSTRACT
In this paper, a new fractional derivative within the exponential decay kernel is addressed for the first time. A new anomalous diffusion model is proposed to describe the heat-conduction problem. With the use of the Laplace transform, the analytical solution is discussed in detail. The presented result is as an accurate and efficient approach proposed for the heat-conduction problem in the complex phenomena.
KEYWORDS
PAPER SUBMITTED: 2018-09-12
PAPER REVISED: 2019-01-18
PAPER ACCEPTED: 2019-02-25
PUBLISHED ONLINE: 2019-06-08
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 3, PAGES [S1005 - S1011]
- Kilbas, A. A., et al., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006
- D Baleanu., et al., Fractional Calculus: Models and Numerical Methods, World Scientific, 2012
- Yang, X. J., et al., Local Fractional Integral Transforms and their Applications, Academic Press, 2015
- Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019.
- Chechkin, A. V., et al., Distributed Order Time Fractional Diffusion Equation, Fractional Calculus and Applied Analysis, 6(2003), 3, pp. 259-280
- Li, X., et al., A Space-Time Spectral Method for the Time Fractional Diffusion Equation, SIAM Journal on Numerical Analysis, 47(2009), 3, pp. 2108-2131
- Tejedor, V., et al., Anomalous Diffusion in Correlated Continuous Time Random Walks, Journal of Physics A: Mathematical and Theoretical, 43(2010), 8, 082002
- Mainardi, F., et al., The Wright Functions as Solutions of the Time-Fractional Diffusion Equation, Applied Mathematics and Computation, 141(2003), 1, pp. 51-62
- Yang, Q., et al., Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in two Dimensions, SIAM Journal on Scientific Computing, 33(2011), 3, pp. 1159-1180
- Liouville, J., Mmoire sur quelques Questions de Gomtrie et de Mcanique, et sur un nouveau genre de Calcul pour rsoudre ces Questions, Journal de lEcole Polytechnique, tome XIII, XXIe cahier, 1832, pp. 1-69
- Riemann, B., Versuch einer allgemeinen Auffassung der Integration und Differentiation, 14 Janvier 1847, Bernhard Riemanns Gesammelte Mathematische Werke, 1892, pp. 353-362
- Sonine, N., Sur la diffrentiation a indice quelconque, Matematicheskii Sbornik, 6(1872), 1, pp. 1-38
- Caputo, M., Linear Models of Dissipation Whose Q is almost Frequency IndependentII, Geophysical Journal International, 13(1967), 5, pp. 529-539
- Caputo, M., et al., A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl, 1(2015), 2, pp. 1-13
- Yang, X. J., et al., A New Fractional Derivative without Singular Kernel: Application to the Modelling of the Steady Heat Flow, Thermal Science, 2(2016), 20, pp. 753-756
- Prabhakar, T. R., A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel, Yokohama Mathematical Journal, 1(1971), 19, pp. 7-15