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In this paper, a new fractional derivative within the exponential decay kernel is ad-
dressed for the first time. A new anomalous diffusion model is proposed to describe 
the heat-conduction problem. With the use of the Laplace transform, the analytical 
solution is discussed in detail. The presented result is as an accurate and efficient 
approach proposed for the heat-conduction problem in the complex phenomena.
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Introduction 

The theory of the fractional calculus (FC) has successfully utilized to describe the 
mathematical problems in physics and applied science, [1-4]. The time-fractional anomalous 
diffusion model, as one of the important applications in FC, was investigated by many scien-
tists. For example, the time-fractional diffusion model for the kinetic description of anoma-
lous diffusion and relaxation phenomena was reported in [5]. The numerical solution of the 
time-fractional diffusion equation was presented [6]. The continuous time random walks for the 
time-fractional diffusion problem were proposed [7]. The Wright-type solution of the time-frac-
tional diffusion equation was suggested [8]. The numerical solution of the time-space fractional 
diffusion model with the aid of the matrix transfer technique was represented [9]. 

The classical fractional derivatives involving the singular kernel in the bounded do-
main were proposed by Liouville [10], Riemann [11], Sonine [12], and Caputo [13]. The gen-
eral derivatives within the exponential kernel were proposed [4, 14, 15]. By the motivation of 
these results, the main aims of the papers are to propose the new fractional derivative within the 
exponential decay kernel based on the Liouville-Sonine and Liouville-Sonine-Caputo fraction-
al derivatives and the general derivatives and to present the new anomalous diffusion model. 
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A new fractional derivative within the exponential decay kernel 

In this section, based on the classical fractional derivatives and the general deriva-
tives, we propose the new fractional derivative within the exponential decay kernel. 

Let ℕ and ℕ0 be the set of the natural numbers and ℕ0 = ℕ0 ∪ {0}, respectively. 
Definition 1. Let 0 ≤ α < 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞. The left-sided Liou-

ville-Sonine fractional derivative is defined [1, 4, 10, 12]:
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and the right-sided Liouville-Sonine fractional derivative [1, 4, 10, 12]:
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Definition 2. Let κ ≤ α < κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞. The left-sided Li-
ouville-Sonine-Caputo fractional derivative is defined [1, 4, 10, 12, 13]:
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and the right-sided Liouville-Sonine-Caputo fractional derivative [1, 4]:
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Definition 3. Let κ ≤ α < κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞. The left-sided Li-
ouville fractional derivative is defined [1, 10]:
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and the right-sided Liouville fractional derivative [4]: 
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Definition 4. Let 0 ≤ α < 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞ and λ > 0. The left-sided 
Caputo-Fabrizio general derivative within the exponential decay kernel is defined [14]. For 
more details see [4, 15]:
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with the normalization constant ℑ(α), where ℑ(1) = ℑ(0) = 1. 
Definition 5. Let κ ≥ 0, κ ∈ ℕ0 ,  –∞ < a < b < ∞ and λ > 0. The left-sided general 

derivative within the exponential decay kernel is defined [4]:
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and the right-sided general derivative within the exponential decay kernel is defined [4]:
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Definition 6. Let κ ≤ α ≤ κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞. and λ > 0. The 
left-sided fractional derivative within the exponential decay kernel is defined:
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and the right-sided fractional derivative within the exponential decay kernel: 
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In particular, when 0 ≤ α ≤ 1, the left-sided fractional derivative within the exponential 
decay kernel is defined:
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and the right-sided fractional derivative within the exponential decay kernel:
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As the inverse operators of the fractional derivatives, we define the corresponding 
fractional integrals:

The left-sided fractional integral of the function f(t) is defined:
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and the right-sided fractional integral of the function f(t): 
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where , ( )E tφ α
α υ λ is the Prabhakar function [1, 4, 16].
The properties of the fractional derivatives within the exponential decay kernel are 

presented:
–  κ ≤ α < κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞ and λ > 0, then we have:
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– If 0 ≤ α < 1 and λ > 0, then we have:
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– If κ ≤ α < κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞ and λ > 0, then we have:
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– If κ ≤ α < κ + 1, κ ≥ 0, κ ∈ ℕ0 and –∞ < a < b < ∞ and λ > 0, then we have:
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A new anomalous diffusion model involving fractional  
derivative within the exponential decay kernel 

In this section, we propose the new time-fractional anomalous diffusion model involv-
ing fractional derivative within the exponential decay kernel. 
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A fractional-derivative diffusion model within the exponential decay kernel is written:
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and κ is the diffusive constant. 
With the use of:
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The general solution of eq. (27) is given:
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Making use of eq. (29), we rewrite eq. (36):
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Taking the inverse Laplace of eq. (38), we give the fundamental solution of eq. (27) 
in the form of the Prabhakar function:
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and the corresponding plots for α = 0.3,α = 0.5, and α = 0.9 are depicted in figs. 1-3, respec-
tively. 
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Conclusion

In the present work, we proposed a new fractional derivative within the exponential 
decay kernel which is the mixed fractional derivative based on the Liouville-Sonine and Liou-
ville-Sonine-Caputo fractional derivatives and the general derivatives. The Laplace transforms 
of the new fractional derivative within the exponential decay kernel and the corresponding inte-
gral operator are given. The new time-fractional anomalous diffusion model involving fraction-
al derivative within the exponential decay kernel and the solutions with the different conditions 
are discussed in detail. The proposed fractional calculus operators are efficient and accurate 
in the description of the anomalous diffusion behaviors of the heat-conduction problem in the 
complex media.
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Nomenclature

Figure 3. The solution of the 
fractional-derivative diffusion model 
within the exponential decay kernel 
when κ = 1, λ = 0.2, and α = 0.9 

Figure 1. The solution of the fractional-
derivative diffusion model within the  
exponential decay kernel when κ = 1,  
λ = 0.2, and α = 0.3 

Figure 2. The solution of the fractional-
derivative diffusion model within the 
exponential decay kernel when κ = 1,  
λ = 0.2, and α = 0.5
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x 	 – space co-ordinate, [m]

Greek symbols

α 	 – fractional order, [–]

κ 	 – diffusive constant, [m2s–1]
τ 	 – time, [s]
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