THERMAL SCIENCE
International Scientific Journal
NEW HIGH-ORDER CONSERVATIVE DIFFERENCE SCHEME FOR REGULARIZED LONG WAVE EQUATION WITH RICHARDSON EXTRAPOLATION
ABSTRACT
Numerical solution for the regularized long wave equation is considered by a new three-level conservative implicit finite difference scheme coupled with Richardson extrapolation which has the accuracy of O(τ + h4). The scheme is a linear system of equations solved without iteratio. The conservation properties of the algorithm are verified by computing the discrete mass and discrete energy. Existence and uniqueness of the numerical solution are proved. Convergence and stability of the scheme are also derived using energy method. The results of numerical experiments show that our proposed scheme is efficiency.
KEYWORDS
PAPER SUBMITTED: 2018-04-20
PAPER REVISED: 2018-07-28
PAPER ACCEPTED: 2018-10-11
PUBLISHED ONLINE: 2019-03-31
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Supplement 3, PAGES [S737 - S745]
- Peregrine, D. H., Long Waves On Beach, J. Fluid Mech., 27 (1967), 4, pp. 815-827
- Bona, J. L., et al., Numerical schemes for a model of nonlinear dispersive waves, J. Comp. Phys., 60 (1985), 2, pp. 167-96
- Benjamin, T. B., et al., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London A, 272 (1972), 1220, pp. 47-78
- Wazwaz, A. M., Analytic study on nonlinear variants of the RLW and the PHI-four equations, Commun. Nonlinear Sci. Numer. Simulat., 12 (2007), 3, pp. 314-327
- Mohammadi, M., Mokhtari, R., Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. Comput. Appl. Math., 235 (2011), 14, pp. 4003-4014
- Soliman, A. A., Numerical simulation of the generalized regularized long wave equation by He's variational iteration method, Math. Comput. Simulat., 70 (2005), 2, pp. 119-124
- Yusufoglu, E., Bekir, A., Application of the variational iteration method to the regularized long wave equation, Comput. Math. Appl, 54 (2007), 7-8, pp. 1154-1161
- Chang, Q., et al., Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion, J. Comput. Phys., 93 (1991), 2, pp. 360-375
- Kutluay, S., Esen A., A finite difference solution of the regularized long wave equation, Math. Probl. Eng., 2006 (2006), 1, pp. 1-14
- Lin, J., et al., High-order compact difference scheme for the regularized long wave equation, Comm. Numer. Methods Engrg., 23 (2007), 2, pp. 135-156
- Cheng, K., et al., An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math., 1, (2019), 5, pp. 1-22
- Ramos, J. I., Explicit finite difference methods for the EW and RLW equations, Appl. Math. Comput., 179 (2006), 2, pp. 622-638
- Wang, T., et al., Conservative schemes for the symmetric regularized long wave equations. Appl. Math. Comput., 190 (2007), 2, pp. 1063-1080
- Wang, T., Zhang, L., A Conservative Finite Difference Scheme for Generalized Regularized Long-wave Equation. Acta Math. Appl. Sin.-E, 29 (2006), 6, pp. 1091-1098
- Zhang, L., Chang Q., A new finite difference method for regularized long wave equation, Journal on Numerical Methods and Computer Application, 21 (2000), 4, pp.247-254
- Avilez-Valente, P., Seabra-Santos, F. J., A Petrov-Galerkin finite element scheme for the regularized long wave equation. Comput. Mech., 34 (2004), 4, pp. 256-270
- Esen, A., Kutluay, S., Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 2, pp. 833-845
- Guo, L., Chen, H., 1H-Galerkin mixed finite element method for the regularized long wave equation, Computing, 77 (2006), 2, pp. 205-221
- Mei, L., Chen, Y., Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Comput. Phy. Commun., 183 (2012), 8, 1609-1616
- Saka, B., Dag, I., A numerical solution of the RLW equation by Galerkin method using quartic B-splines, Comm. Numer. Methods Engrg., 24 (2008), 11, pp. 1339-1361
- Dag, I., Least squares quadratic B-spline finite element method for the regularized long wave equation, Comput. Methods Appl. Mech. Engrg., 182 (2000), 1, pp. 205-215
- Dag, I., Ozer M. N., Approximation of the RLW equation by the least square cubic B-spline finite element method, Appl. Math. Model., 25 (2001), 3, pp. 221-231
- Gu, H., Chen N., Least-squares mixed finite element methods for the RLW equations, Numer. Meth. Part. Differ. Equ., 24 (2008), 3, pp. 749-758
- Soliman, A. A., Raslan, K. R., Collocation method using quadratic B-spline for the RLW equation, Int. J. Comput. Math., 78 (2001), 3, pp.399-412
- Dag, I., et al., Application of cubic B-splines for numerical solution of the RLW equation, Appl. Math. Comput., 159 (2004), 2, pp. 373-389
- Soliman, A. A., Hussien M. H., Collocation solution for RLW equation with septic spline, Appl. Math. Comput., 161 (2005), 2, pp. 623-636
- Zhang, F., et al., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71 (1995), 2-3, pp. 165-77
- Li, S., Vu-Quoc, L., Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32 (1995), 6, pp. 1839-1875
- Zhou, Y., Application of Discrete Functional Analysis to the Finite Difference Method. Inter. Acad. Publishers, Beijing, 1990