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Numerical solution for the regularized long wave equation is considered by a new 
three-level conservative implicit finite difference scheme coupled with Richardson 
extrapolation which has the accuracy of O(τ + h4). The scheme is a linear system of 
equations solved without iteratio. The conservation properties of the algorithm are 
verified by computing the discrete mass and discrete energy. Existence and unique-
ness of the numerical solution are proved. Convergence and stability of the scheme 
are also derived using energy method. The results of numerical experiments show 
that our proposed scheme is efficiency. 
Key words: regularized long wave equation, conservative difference scheme,  

Richardson extrapolation, stability, convergence

Introduction

Consider the following initial-boundary value problem for the regularized long wave 
(RLW) equation:
 0, ( , ) ( , ) (0, )t x x xxt L Ru u uu u x t x x T+ + − = ∈ ×   (1)

with an initial condition:
 u(x, 0) = u0(x),   x ∈ [xL, xR] (2)

and boundary condition:
 u(xL, t) = u(xR, t) = 0,   t ∈ [0, T]  (3)

where u0(x) is a given known function. The RLW equation is originally introduced to describe 
the behavior of the undular bore by Peregrine [1] and plays a major role in the study of non-lin-
ear dispersive waves [2] because of its description a larger number of important physical phe-
nomena, such as shallow water waves and ion acoustic plasma waves.

Mathematical theory for the equation was developed in [3]. Due to non-linear nature 
of the RLW equation, few exact solutions exist in the literature [4, 5]. Studies mainly consider 
numerical solution of the problem. These include variational iteratio method [6, 7], finite differ-
ence methods [8-15] and various finite element methods such as the Galerkin method [16-20], 
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the least squares method [21-23] and collocation method with quadratic B-splines [24], cubic 
B-splines [25], and recent septic splines [26]. 

The problem (1)-(3) has two conserved quantities: mass and energy, i. e., 

 0( ) ( , )d ( )d (0)
R R

L L

x x

x x

Q t u x t x u x x Q= = =∫ ∫  (4)

and

 
2 2 2 2

2 2 2 2
0 0( ) ( ) (0)x xL L L L

E t u u u u E= + = + =  (5)

where Q(0) and E(0) are two positive constants which relate to the initial condition. Zhang  
et al. [27] pointed out that the conservative difference schemes perform better than the non-con-
servative ones, and the non-conservative difference schemes may easily show non-linear blow-
up. Li and Vu-Quoc [28] pointed out that in some areas, the ability to preserve some invariant 
properties of the original differential equation is a criterion judge the success of a numerical 
simulation. Thus, the purpose of this paper is to present a conservative difference scheme for 
the initial-boundary value problem (1)-(3). By the Richardson extrapolation, the scheme has the 
accuracy of O(τ2 + h4) without refined mesh. Moreover, the resulting scheme is a linear system 
of equations, and it can be solved easily without any iteratios.

Finite difference scheme

Let N, J be any positive integers and h = (xR –xL) /J be the step size for the grid 
such that xj = xL + jh (j = –1, 2,..., J, J + 1). Let τ be the step for the temporal direction,  
tn = nτ (n = 0, 1, 2,..., N), N = [T/τ].

Denote un
j ≈ u(xj, tn) and:

 0
1 0 1{ ( ) 0, 1,0,1,2, , , 1}h j J JZ u u u u u u j J J− += = = = = = = − +

Define:

 

1 1 1 1
ˆ

1 1 1 1
2 2

ˆ

1
2

1 11

( ) , ( ) , ( )
2

( ) , ( ) ,
2

, , || || , , || || max | |

n n n n n
j j j j j jn n n

j x j x j x

n n n n n n
j j j j j jn n n

j x j jt

J
n n n n n n n n n

j j j Jj

u u u u u u
u u u

h h h
u u u u u u

u u u
h h h

u v h u v u u v u u

+ − + −

+ − + −
+ −

−

∞ ≤ ≤ −=

− − −
= = =

− − +
= = =

= = =∑
τ

and in the paper, C denotes a general positive constant which may have different values in dif-
ferent occurrences.
Lemma 1. For a mesh function by Cauchy-Schwarz inequality:
 2 2 2

ˆx x xu u u≤ ≤


The following conservative difference scheme for the problem (1)-(3) is considered:

 
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

4 1 4 1 4( ) ( ) ( ) ( ) ( ) [ ( ) ( ) ]
3 3 3 3 9

n n n n n n n n n
j j j j x j x j j x j j xt x xtx xtu u u u u u u u u− + + − + +



 1 [ ( ) ( ) ] 0, 1,2, , 1, 1, 2, , 1
9

n n n n
j j x j j xu u u u j J n N− + = = − = −

 

   (6)

 0
0 ( ), 0,1, 2,...,j ju u x j J= =  (7)
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2

1 1 1 0 0 0
ˆ ˆ 0 02

4 1( ) ( ) ( ) ( ) ( ) ( ) ( ), 1, 2, , 1
3 3j j j x x j j j j jx x

u u u
u u u u x x x u x x j J

x xx
τ τ

∂ ∂ ∂
− + = − − − = −

∂ ∂∂


 (8)

 0 , 0,1, 2, ,n
hu Z n N∈ =   (9)

Based on the scheme (6)-(9), the discrete versions of (4) and (5) are obtained:
Theorem 1. The scheme (6)-(9) admits the following invariant,

  
1 1 1

1 1 1 1 0
ˆ

1 1 1

2( ) ( ) ( ) ,
2 9 18

J J J
n n n n n n n n

j j j j x j j x
j j j

h h hQ u u u u u u Q Qτ τ
− − −

+ + + −

= = =

= + + − = = =∑ ∑ ∑ 

  (10)

 2 2 2 2 2 21 1 1 1 0
ˆ ˆ

1 4 1 4 1 ,
2 3 3 3 3

n n n n n n n n
x x x xE u u u u u u E E+ + + − = + − + + − = = = 

 


 (11)

for n = 1, 2,...,N –1.
Proof. Multiplying (6) with h, then summing up for j from 1 to J – 1, by the boundary 

condition (9) and formula of summation by parts [29]:

  
1 11 1 1

ˆ
1 1 1

( ) 4 1( ) ( ) 0
2 9 9

n nJ J J
j j n n n n

j j x j j x
j j j

u u
h h u u h u u

τ

+ −− − −

= = =

−
+ − =∑ ∑ ∑ 

  (12) 

Again since: 
 

1 1 1
1 1

ˆ ˆ ˆ
1 1 1

( ) ( ) ( )
2 2

J J J
n n n n n n
j j x j j x j j x

j j j

h hh u u u u u u
− − −

+ −

= = =

= −∑ ∑ ∑  (13)

 
1 1 1

1 1

1 1 1
( ) ( ) ( )

2 2

J J J
n n n n n n
j j x j j x j j x

j j j

h hh u u u u u u
− − −

+ −

= = =

= −∑ ∑ ∑  

 (14)

substitute (13) and (14) into eq. (12), then eq. (10) is obtained.
Taking the inner product of (6) with 2ūn, that is un+1 + nn–1, according to boundary 

condition (9):

 

2 2 2

ˆ ˆˆ ˆ ˆ

4 1 8 2, ,
3 3 3 3

2 ( , ), 2 ( , ), 0

n n n n n n n
x x x xt t t

n n n n n n
j j j j

u u u u u u u

u u u u u uϕ κ

+ − + 〈 〉 − 〈 〉 +

+ 〈 〉 − 〈 〉 =



 (15)

where
 

ˆ ˆ
4( , ) [ ( ) ( ) ]
9

n n n n n n
j j j j x j j xu u u u u uϕ = +

 1( , ) [ ( ) ( ) ]
9

n n n n n n
j j j j x j j xu u u u u uκ = +

 

Considering
 ˆ , 0, , 0n n n n

x xu u u u〈 〉 = 〈 〉 =


 (16)
 ( , ), 0n n nu u uϕ〈 〉 =  (17)
and
 ( , ), 0n n nu u uκ〈 〉 =  (18)

Substituting (16)-(18) into eq. (15), we have:

 ( ) ( ) ( )2 2 2 2 2 21 1 1 1 1 1
ˆ ˆ

1 2 1 0
2 3 6

n n n n n n
x x x xu u u u u u+ − + − + −− + − − − =

τ τ τ
 (19)

By the definition of En, (11) is gotten from (19).
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Solvability

Next, we are going to prove the solvability of the finite difference scheme (6)-(9).
Theorem 1. The difference scheme (6)-(9) is uniquely solvable.
Proof. Use the mathematical induction. It is obvious that u0 and u1are uniquely de-

termined by eqs. (7) and (8). Now suppose u0, u1,..., un–1, un be solved uniquely. Consider the 
equation of eq. (6) for un+1:

 

1 1 1 1 1
ˆˆ ˆ

1 1

1 2 1 2 1( ) ( ) ( ) ( )
2 3 6 3 6

1 1( , ) ( , ) 0, 1, 2,... 1, 1, 2,... 1
2 2

n n n n n
j j j xx j x j xx x

n n n n
j j j j

u u u u u

u u u u j J n N

τ τ τ

ϕ κ

+ + + + +

+ +

− + + − +

+ − = = − = −



 (20)

Computing the inner product of (20) with un+1, using (9), we obtain:

     

2 2 21 1 1 1 1 1 1
ˆ ˆ

1 1 1 1

1 2 1 2 1, ,
2 3 6 3 6

1 1( , ), ( , ) 0
2 2

n n n n n n n
x x x x

n n n n n n

u u u u u u u

u u u u u u

+ + + + + + +

+ + + +

+ − + 〈 〉 − 〈 〉

− =

τ τ τ

ϕ κ  (21)

Since:
 1 1 1 1

ˆ , 0 , 0n n n n
x xu u u u+ + + +〈 〉 = 〈 〉 =



 (22)

 1 1( , ), 0n n nu u uϕ + +〈 〉 =  (23)

and
 1 1( , ), 0n n nu u uκ + +〈 〉 =  (24)

 Substituting (22)-(24) into (21), by Lemma 1, we have: 
 2 21 1 0n n

xu u+ ++ ≤

That is, (20) has only a trivial solution. Therefore, (6) determines un+1
j    uniquely. This 

completes the proof.

Convergence and stability

Let v(x, t) be the solution of problem (1)-(3) and vn
j = u(xj, tn), the the truncation error 

of the scheme (6)-(9) is derived:

 

ˆ ˆ ˆˆ ˆ ˆ
4 1 4 1( ) ( ) ( ) ( ) ( ) ( , ) ( , ),
3 3 3 3

1,2,..., 1, 1, 2..., 1

n n n n n n n n n n
j j j j j x j x j j j jt x xtx xtr v v v v v v v v v

j J n N

ϕ κ= − + + − + −

= − = −



 (25)

 ( ), 0,1, 2...,j jv u x j J= =  (26)

 

2
1 1 1 00 0 0

ˆ ˆ 0 02

4 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
3 3

1,2, , 1

j j j x x j j j j j jx x

u u u
v v v u x x x u x x r

x xx
j J

τ τ
∂ ∂ ∂

− + = − − − +
∂ ∂∂

= −  (27)

 0 , 0,1, 2, ,n
hv Z n N∈ =   (28)
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According to Taylor expansion, we obtain that:
 2 4( )n

jr O hτ= +  (29)

holds as h, τ → 0.  
For the difference solution of the scheme (6)-(9), we have the following priori esti-

mates.
Lemma 1. Suppose u0 ∈ H1

0 [xL, xR] then the solution of the initial-boundary value prob-
lem (1)-(3) satisfies:
 2 2

|| || || || || ||L x L Lu C u C u C
∞

≤ ≤ ≤

Proof. It follows from (5) that:
 

2 2

2 2( ) (0)xL L
E t u u E C= + = =

which yields:
 

2 2
|| || || ||L x Lu C u C≤ ≤

By Sobolev inequality, we have:
 

L
u C

∞
≤

Lemma 2. Suppose u0 ∈ H1
0 [xL, xR] then the solution of the scheme (6)-(9) satisfies: 

 || || || || || ||n n n
xu C u C u C∞≤ ≤ ≤

for n = 0, 1, 2,...N.
Proof. It follows from Theorem 1 and Lemma 1 that:

 ( )2 2 2 21 1 01
2

n n n n n
x xu u u u E E C+ ++ + + ≤ = =

that is:
 || || || ||n

n xu C u C≤ ≤

By discrete Sobolev inequality [29], we have:

 ||| |nu C∞≤

Theorem 1. Suppose u0 ∈ H1
0 [xL, xR] then the solution un of the difference scheme  

(6)-(9) converges to the solution of the problem (1)-(3) with order O(τ2 + h4) by the ||⋅||∞ norm.
Proof. Letting:

 n n n
j j je v u= −

and subtracting (6)-(9) from (25)-(28), respectively, we have:

 
ˆ ˆ ˆˆ ˆ ˆ

4 1 4 1( ) ( ) ( ) ( ) ( ) ( , ) ( , )
3 3 3 3

n n n n n n n n n n
j j j j j x j x j j j jt x xtx xtr e e e e e v v u uϕ ϕ= − + + − + − −



 

 ( , ) ( , ), 1, 2, , 1, 1, 2, , 1n n n n
j j j jv v u u j J n Nκ κ− + = − = −   (30)

 0 0, 0,1, 2, ,je j J= =   (31)

 1 1 1 0
ˆˆ

4 1( ) ( ) , 1, 2,... 1
3 3j j xx j xx je e e r j J− + = = −  (32)

 0 , 0,1, 2, ,n
he Z n N∈ =   (33)
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Computing the inner product of (32) with e1, and using the boundary condition (33), 
we get:
 2 2 21 1 1 0 1

ˆ
4 1 ,
3 3x xe e e r e+ − = 〈 〉  (34)

From (29), Cauchy-Schwarz inequality and Lemma 1, we obtain:

 2 21 1 2 4 2( )xe e O hτ+ ≤ +  (35)

Computing the inner product of (29) with 2e–n and using (33) again, we have:

 2 2 2

ˆ ˆˆ ˆ ˆ

4 1 8 2,2 , ,
3 3 3 3

n n n n n n n n n
x x x xt t t

r e e e e e e e e〈 〉 = + − + 〈 〉 − 〈 〉 +


 2 ( , ) ( , ), 2 ( , ) ( , ),n n n n n n n n n nv v u u e v v u u eϕ ϕ κ κ+ 〈 − 〉 − 〈 − 〉  (36)

Similarly to (16), we have:
 ˆ , 0, , 0n n n n

x xe e e e〈 〉 = 〈 〉 =


 (37)

According to Lemma 1, Lemma 2, Theorem 1 and Cauchy-Schwartz inequality, we get:

 
1 1

ˆ ˆ ˆ
1 1

4 4( , ) ( , ), [ ( ) ( ) ] ( )( )
9 9

J J
n n n n n n n n n n n n n n n

j j x j j x j j j j j j x
j j

v v u u e h e v u e e h e v u e eϕ ϕ
− −

= =

〈 − 〉 = + − + ≤∑ ∑

 ( ) ( )2 2 2 2 2 2 2 21 1 1 1
ˆ

n n n n n n n n
x x xC e e e C e e e e e+ + + −≤ + + ≤ + + + +  (38)

 
1 1

1 1

1 1( , ) ( , ), [ ( ) ( ) ] [( ) ( ) ]
9 9

J J
n n n n n n n n n n n n n n n

j j x j j x j j j x j j x j
j j

v v u u e h v v u u e h v v u u eκ κ
− −

= =

〈 − 〉 = − + − ≤∑ ∑   

 ( ) ( )2 2 2 2 2 2 2 21 1 1 1n n n n n n n n
x x xC e e e C e e e e e+ + + −≤ + + ≤ + + + +


 (39)

and
 1 1 2 1 2 1 2, 2 , || || || || || ||n n n n n n n nr e r e e r e e+ − + −〈 〉 = 〈 + 〉 ≤ + +  (40)

Substituting (37)-(40) into (36), we get:

 ( )2 2 2 2 2 2 2 2 21 1 1 1
ˆˆ ˆ ˆ

4 1
3 3

n n n n n n n n n
x x x xt t t

e e e r C e e e e e+ + + −+ − ≤ + + + + +  (41)

Letting:
 2 2 2 2 2 21 1 1

ˆ ˆ
4 4 1 1
3 3 3 3

n n n n n n n
x x x xB e e e e e e+ + += + + + − −

and summing up (41) from 1 to n, we have:

 ( )2 2 20

1 0

n n
n l l l

x
l l

B B C r C e eτ τ
= =

≤ + + +∑ ∑  (42)

Noticing:
 2 2 2 4 2

11
max ( )

n
l l

l nl
r n r TO hτ τ τ

≤ ≤=

≤ ≤ +∑
From (31) and (35), we have B0 = O(τ2+ h4)2. Hence, from (42), and Lemma 1, we get:

 ( )12 2 2 2 2 21 1 2 4 2

0
( )

n
n n n n n l l

x x x
l

e e e e B O h C e eτ τ
+

+ +

=

+ + + ≤ ≤ + + +∑
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By discrete Gronwall inequality [29], we have:
 2 4 2 4( ) ( )n n

xe O h e O hτ τ≤ + ≤ +  

Finally, by discrete Sobolev inequality [29], we get:
 2 4( )ne O hτ

∞
≤ +

This completes the proof of Theorem 1.
Similarly, we can prove the stability of the difference solution.

Theorem 2. Under the conditions of Theorem 1, the solution of the scheme (6)-(9) is stable by 
the || ⋅ ||∞ norm.

Numerical experiments

The single solitary-wave solution of RLW eq. (1) is given by:
 2( , ) sec ( )u x t A h kx tω δ= − +
where

 
2

2 2

3
21 2(1 )

a a aA k
a a

ω= = =
− −

and a and δ are constants.
The scheme (6)-(9) is a linear system of equations which can be solved without itera-

tio. Take and the initial function of the problem (1)-(3) is re-written:

 2 1( ,0) sec
4

u x h x =  
 

In the numerical experiments, we take xL = –50, xR = 50, and T = 20. The errors in the 
sense of L∞-norm and L2-norm of the numerical solutions are listed on tab. 1 under different mesh 
steps τ and h. Table 2 shows that the computational and the theoretical orders of the scheme are 
very close to each other. Table 3 shows the value of En and Q n at different time. It indicates that 
the conservation of the scheme (6)-(9) is very good and it is suitable for long-term computation.

Table 1. The errors estimates of numerical solution with various τ and h
τ = 0.2                 h = 0.01 τ = 0.05                 h = 0.05 τ = 0.0125                h = 0.025

||en|| ||en||∞ ||en|| ||en||∞ ||en|| ||en||∞
t = 5 1.293731e-2 6.219891e-3 8.406610e-4 4.019759e-4 5.266221e-5 2.520183e-5
t = 10 2.473412e-2 1.122209e-2 1.575704e-3 7.156453e-4 9.871933e-5 4.483281e-5
t = 15 3.472503e-2 1.505045e-2 2.206277e-3 9.588093e-4 1.381956e-4 6.004674e-5
t = 20 4.338962e-2 1.828892e-2 2.765299e-3 1.166337e-3 1.740699e-4 7.302556e-5

Table 2. The numerical verification of theoretical accuracy O(τ2 + h4)

( ) 4, ,
2 4

n n he h e ττ  
 
 

( ) 4, ,
2 4

n n he h e ττ
∞

∞

 
 
 

τ = 0.2 
h = 0.1

τ = 0.05 
h = 0.05

τ = 0.0125  
h = 0.025

τ = 0.2 
h = 0.1

τ = 0.05 
h = 0.05

τ = 0.0125 
h = 0.025

t = 5 – 15.389452 15.963269 – 15.473292 15.950260
t = 10 – 15.697181 15.961462 – 15.681087 15.962535
t = 15 – 15.739194 15.964880 – 15.697027 15.967716
t = 20 15.690750 15.976137 15.680645 15.971630
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Table 3. Discrete mass and discrete energy with various τ and h
τ = 0.2              h = 0.1 τ = 0.05             h = 0.05 τ = 0.0125            h = 0.025

Qn En Qn En Qn En

t = 0 8.0023652 5.5999999 8.0001481 5.5999999 8.0000090 5.5999999
t = 5 8.0023653 5.5999999 8.0001481 5.5999999 8.0000092 5.5999999
t = 10 8.0023652 5.5999999 8.0001480 5.5999999 8.0000091 5.5999999
t = 15 8.0023623 5.5999999 8.0001451 5.5999999 8.0000062 5.5999999
t = 20 8.0022799 5.5999999 8.0000633 5.5999999 8.0000037 5.5999999

From these computational results, it shows that our proposed algorithm is efficient 
and reliable.
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