THERMAL SCIENCE
International Scientific Journal
NUMERICAL-EXPERIMENTAL VALIDATION OF THE WELDING THERMAL CYCLE CARRIED OUT WITH THE MIG WELDING PROCESS ON A 6063-T5 ALUMINIUM TUBULAR PROFILE
ABSTRACT
The purpose of this work is to validate the thermal welding cycle obtained experimentally with the metal inert gas (MIG) welding process on a 6063-T5 aluminium tubular profile using the finite element method. The assembly formed by the tubular profile and the weld bead obtained experimentally is represented in an accurate way, taking care of both the geometry and the contour of the weld bead. The precision achieved in the numerical-experimental validation carried out by means of the finite element method is due to the care that has been taken in drawing the welded piece together with the weld bead made experimentally. In the validation carried out, the experimental and numerical cooling curves and the critical cooling time between 400 and 300ºC (t4/3 ) in both curves are compared.
KEYWORDS
PAPER SUBMITTED: 2018-12-15
PAPER REVISED: 2019-01-13
PAPER ACCEPTED: 2019-02-02
PUBLISHED ONLINE: 2019-02-17
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 6, PAGES [3639 - 3650]
- Boumerzoug, Z., et al., Thermal Cycle Simulation Of Welding Process In Low Carbon Steel, Mater. Sci. Eng. A, 530 (2011), pp. 191-195
- Sarsilmaz, F., Relationship between micro-structure and mechanical properties of dissimilar aluminum alloy plates by friction stir welding., Therm. Sci., (2018)
- Ambriz, R., et al., Effect Of The Weld Thermal Cycles By The Modified Indirect Electric Arc (MIEA) On The Mechanical Properties Of The AA6061-T6 Alloy, Rev. Metal., 45 (2009), 1, pp. 42-51
- Ambriz, R.R., et al., Effect Of The Weld Thermal Cycles Of The Modified Indirect Electric Arc On The Mechanical Properties Of The AA6061-T6 Alloy, Weld. Int., 24 (2010), 4, pp. 321-328
- Taban, E., et al., Characterization Of 6061-T6 Aluminum Alloy To AISI 1018 Steel Interfaces During Joining And Thermo-Mechanical Conditioning, Mater. Sci. Eng. A, 527 (2010), 7-8, pp. 1704-1708
- Piris, N., et al., The Influence Of Heat Treatment On Strain Hardening And Strain-Rate Sensitivity Of Aluminium Alloys For Aerospace, Rev. Metal., 40 (2004), 4, pp. 288-293
- Polmear, I., et al., Light Alloys: Metallurgy Of The Light Metals, Butterworth-Heinemann, 2017
- Kassner, M., McMahon, M., The Dislocation Microstructure Of Aluminum, Metall. Mater. Trans. A, 18 (1987), 5, pp. 835-846
- Shercliff, H., Ashby, M., A Process Model For Age Hardening Of Aluminium Alloys—I. The Model, Acta Metall. Mater., 38 (1990), 10, pp. 1789-1802
- Perez, I., et al., Analysis Of The Influence Of Aging Heat Treatment On The Modification Of The Mechanical Properties Of The Alloy AA6060 Processed By ECAE, Rev. Metal., 47 (2011), 1, pp. 76-89
- Croucher, T., Quenching Of Aluminum Alloys: What This Key Step Accomplishes, Heat Treat., 14 (1982), 5, pp. 20-21
- Valdenebro, J.M., et al., Ciclo Térmico Y Soldabilidad De Las Aleaciones De Aluminio, Rev. Metal., 53 (2017), 3, pp. 103
- Cahn, J.W., The Kinetics Of Grain Boundary Nucleated Reactions, Acta Metall., 4 (1956), 5, pp. 449-459
- Miguel, V., et al., Optimización Multiobjetivo Del Proceso De Soldeo GMAW De La Aleación AA 6063-T5 Basado En La Penetración Y En La Zona Afectada Térmicamente, Rev. Metal., 51 (2015), 1, pp. 037
- Meseguer-Valdenebro, J.L., et al., Numerical Study Of TTP Curves Upon Welding Of 6063-T5 Aluminium Alloy And Optimization Of Welding Process Parameters By Taguchi\' S Method, (2017)
- Rosenthal, The Theory Of Moving Sources Of And Its Applications To Metal Treatments, Trans. ASME, 68 (1946), pp. 849-865
- Rykalin, R.R., Energy Sources For Welding, Weld. WORLD, 12 (1974), 9/10, pp. 272-248
- Zeng, Z., et al., Numerical And Experimental Investigation On Temperature Distribution Of The Discontinuous Welding, Comput. Mater. Sci., 44 (2009), 4, pp. 1153-1162
- Guoxiang, X., et al., FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER Plus GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY, ACTA Metall. Sin., 48 (2012), 9, pp. 1033-1041
- Wang, H., et al., Numerical Simulation of the Prestressed Laser Welding of 7075-T7451 Aluminum Alloy Sheet, Proceedings, Machining and advanced manufacturing technology x, Laublsrutistr 24, CH-8717 Stafa-Zurich, Switzerland, 2010, Vol. 431-432, pp. 13-16
- Alimoradi, A., et al., 3-D Finite Element Simulation of Friction Stir Welding Process of Non Similar Aluminum-Copper Sheets, Proceedings, DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, Laublsrutistr 24, CH-8717 Stafa-Zurich, Switzerland, 2011, Vol. 312-315, pp. 953-958
- Hirasawa, S., et al., Analysis Of Effect Of Tool Geometry On Plastic Flow During Friction Stir Spot Welding Using Particle Method, J. Mater. Process. Technol., 210 (2010), 11, pp. 1455-1463
- Keivani, R., et al., Effects Of Pin Angle And Preheating On Temperature Distribution During Friction Stir Welding Operation, Trans. Nonferrous Met. Soc. CHINA, 23 (2013), 9, pp. 2708-2713
- Zhang, Z., Zhang, H.W., Numerical Studies On Effect Of Axial Pressure In Friction Stir Welding, Sci. Technol. Weld. Join., 12 (2007), 3, pp. 226-248
- Pavelic, V., et al., experimental and computed temperature histories in gas tungsten-arc welding of thin plates, Weld. J., 48 (1969), 7, pp. S295-
- Paley, Z., Hibbert, P., Computation of temperatures in actual weld designs, Weld. J., 54 (1975), 11, pp. S385-S392
- Goldak, J., et al., A New finite-element model for welding heat-sources, Metall. Trans. B-Process Metall., 15 (1984), 2, pp. 299-305
- Meseguer-Valdenebro, J.L., et al., Experimental Validation Of A Numerical Method That Predicts The Size Of The Heat Affected Zone. Optimization Of The Welding Parameters By The Taguchi's Method, Trans. Indian Inst. Met., 69 (2016), 3, pp. 783-791
- Zhu, X.K., Chao, Y.J., Effects Of Temperature-Dependent Material Properties On Welding Simulation, Comput. Struct., 80 (2002), 11, pp. 967-976
- Haupin, W., Aluminum, in: Encyclopedia of Physical Science and Technology (Third Edition) (Ed. R.A. Meyers), Academic Press, New York, 2003, pp. 495-518
- ***, UNE-EN-287-1. Cualificación de soldadores. Soldeo por fusión. Parte 1: Aceros., AENOR
- Mato, P., et al., A Simplified Engineering Method For A T-Joint Welding Simulation, Therm. Sci., 22 (2018), 3, pp. S867-S873
- Deng, D., et al., Numerical Simulation Of Welding Distortion In Large Structures, Comput. Methods Appl. Mech. Eng., 196 (2007), 45-48, pp. 4613-4627
- Segarra, J.A., Portolés, A., Caracterización Microestructural Y Modelización Mediante Elementos Finitos De Uniones Soldadas de la aleación de magnesio AZ31, Rev. Metal., 54 (2018), 1, pp. 114
- Ivanović, I.B., et al., Numerical Study Of Transient Three-Dimensional Heat Conduction Problem With A Moving Heat Source, Therm. Sci., 15 (2011), 1, pp. 257-266
- Bjelić, M.B., et al., Numerical Modeling Of Two-Dimensional Heat-Transfer And Temperature-Based Calibration Using Simulated Annealing Optimization Method: Application To Gas Metal Arc Welding, Therm. Sci., 20 (2016), 2, pp. 655-665
- Meseguer-Valdenebro, J.L., et al., Electrical Parameters Optimisation On Welding Geometry In The 6063-T Alloy Using The Taguchi Methods, Int. J. Adv. Manuf. Technol., 98 (2018), 9-12, pp. 2449-2460
- Fachinotti, V.D., et al., Analytical Solutions Of The Thermal Field Induced By Moving Double-Ellipsoidal And Double-Elliptical Heat Sources In A Semi-Infinite Body, Int. J. Numer. METHODS Biomed. Eng., 27 (2011), 4, pp. 595-607
- Tekelioglu, M., Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces., Therm. Sci., 21 (2017), 3