International Scientific Journal

Authors of this Paper

External Links


The hydromagnetic-flow in sinusoidally heated porous channel is studied by utilizing Darcy-Forchiemmer law with Joule heating effect. The Darcy’s resistance term in the momentum equation is acquired by using modified Darcy’s law. The governing equations for flow velocity, temperature, and mass concentration are developed under lubrication approximation, commonly known as long wavelength assumption in the realm of peristaltic flows. A well-tested implicit finite difference scheme is employed to solve the set of these equations along with appropriate boundary conditions. The governing equations involve important parameters namely, Forchiemmer parameter, dimensionless radius of curvature, permeability parameter, Hartmann, Brinkmann, Schmidt, and Soret numbers. The effect of these important parameters on velocity, temperature and mass concentration is illustrated through graphs. The pressure-flow rate relationship and streamlines are also shown. The presence of porous matrix inside the channel impedes the flow velocity and reduces the peristaltic transport and mingling. Moreover, temperature of the fluid rises with decreasing permeability of porous-matrix and Hartmann number.
PAPER REVISED: 2017-12-27
PAPER ACCEPTED: 2017-12-29
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 5, PAGES [3075 - 3091]
  1. Shapiro, A.H., Jaffrin, M.Y. and Weinberg, S.L., Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech., 37 (1969) pp. 799-825.
  2. Fung, Y.C. and Yih, C.S., Peristaltic transport, Trans. ASME J. Appl. Mech., 45 (1968) pp. 669-675.
  3. Raju, K.K. and Devanathan, R., Peristaltic motion of non-Newtonian fluid, Acta, 11 (1972) pp. 170-178.
  4. Siddiqui, A.M. and Schwarz, W.H., Peristaltic flow of second order fluid in tubes, J. Non-Newtonian Fluid Mech., 30 (1994) pp. 257-284.
  5. N. Ali, M. Sajid, Z. Abbas, T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, European. Journal of Mechanics-B/Fluids, 2010, pp. 384-397.
  6. Böhme, G. and Müller, A., Analysis of non-Newtonian effects in Peristaltic pumping, J of non-Newtonian Fluid Mech., 201 (2013) pp. 107-119.
  7. Kalantari, A., Sadeghy, K. and Sadeqi, S., Peristaltic flow of non-Newtonian fluids through curved channels: a Numerical Study, Ann. Trans. Nordic Rheol. Soc., 21 (2013) pp. 163-170.
  8. Chu Kwang-Hua W., Stokes slip flow between corrugated walls, ZAMP, 34 (1996) pp. 591-598.
  9. El- Shehawy, E.F., El-Dabe, N.T. and El- Desoky, I.M., Slip effects on the peristaltic flow of a non- Newtonian Maxwellian fluid, Acta Mech., 186 (2006) pp. 141-159.
  10. Ali, N., Wang, Y., Hayat, T. and Oberlack, O., Slip effects on the peristaltic flow of a third grade fluid in a circular cylindrical tube, J. App. Mech., 76 (2009) pp. 1-10.
  11. Bandopadhyay, A., Tripathi, D. and Chakraborty, S., Electroosmosis-modulated peristaltic transport in microfluidic channel, Phy. Fluids, 28 (2016) pp. 052002.
  12. K. Vajravelu, G. Radhakrishnamacharya, V. Radhakrishnamurty, Peristaltic flow and heat transfer in a vertical porous annulus with long wavelength approximation, Int. J. Nonlinear Mech., 42 (2008) 754-759.
  13. Mekheimer, Kh.S. and Abd elmaboud, Y., The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of endoscope, Phy. Letters A, 372 (2008) pp. 1657-1665.
  14. Ali, N., Sajid, M., Javed, T. and Abbas, Z., Heat transfer analysis of peristaltic flow in a curved channel, Int. J. Heat Mass Transfer, 53 (2010) pp. 3319-3325.
  15. Tripathi, D. and Bég, O.A., Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic flood bolus through the human esophagus, Int. J Thermal Sci., 70 (2013) pp. 41-53.
  16. N.T.M. Eldabe, M.F. El-Sayed, A.Y. Ghaly, H.M. Sayed, Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature dependent viscosity, Arch. Appl. Mech., 78 (2008) 599-624.
  17. S. Srinivas, M. Kothandapani, The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Appl. Math. Comput., 213 (2009) 197-208.
  18. Hayat, T., Hina, S., Hendi, A.A. and Asghar, S., Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer, Int. J Heat Mass Transfer, 54 (2011) pp. 5126-5136.
  19. Srinivas, S., Gayathri, R. and Kothandapani, M., Mixed convective heat and mass transfer in an asymmetric channel with peristalsis, Commun. Nonlinear Sci. Numer. Simul., 16 (2011) pp. 1845-1862.
  20. Raheel, A., Nasir, A. and Khurram, J., Heat and mass transfer effects on the peristaltic flow of Sisko fluid in a curved channel, Thermal Science (2017)
  21. Aarts, A.C.T. and Ooms, G., Net flow of compressible viscous liquids induced by travelling waves in porous media, J Eng. Math., 34 (1998) pp. 435-450.
  22. Haroun, M.H., Effect of Deborah number and phase difference on peristaltic transport of a third-order fluid in an asymmetric channel, Commun. Nonlinear Sci. Numer. Simul., 12 (2007) pp. 1464-1480.
  23. Hayat, T., Javed, M. and Asghar, S., MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls, Phy. Letter A, 372 (2008) pp. 5026-5036.
  24. Ali, N., Hayat, T. and Asghar, S., Peristaltic flow of a Maxwell fluid in a channel with compliant walls, Chaos Solitons and Fractals, 39 (2009) pp. 407-416.
  25. Mekheimer, Kh.S. and Abd-El-Wahab, A.N., Net Annulus Flow of a Compressible Viscous Liquid with Peristalsis, J. Aero. Eng., 25 (2012) pp. 660-669.
  26. Abbasi, A., Ahmed, I., Ali, N. and Hayat, T., An analysis of peristaltic motion of compressible convected Maxwell fluid, AIP Adv., 6 (2016) pp. 015119.
  27. Brinkman, H.C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Research, 1 (1949) pp. 27-34.
  28. El- Shehawy, E.F., Peristaltic transport through a porous medium, Appl. Math. Comp., DOI: 10.1016/S0096-3003 (2001) 00236-3.
  29. Mekheimer, Kh.S., Non-linear peristaltic transport through a porous medium in an inclined planar channel, J. Porous Media, 6 (2003) pp. 189.
  30. Kothandapani, M. and Srinivas, S., On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium, Phy. Letters A, 372 (2008) pp. 4586-4591.
  31. Hayat, T., Qureshi M.U. and Hussain, Q., Effect of heat transfer on peristaltic flow of an electrically conducting fluid in a porous space, Appl. Math. Mod., 33 (2009) pp. 1862-1873.
  32. Wang, Y., Hayat, T., Ali, N. and Oberlack, M., Magneto hydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel, Phy. A, 387 (2008) pp. 347-362.
  33. Hayat, T. and Hina, S., The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer, Nonlinear Anal.: Real World Appl., 11 (2010) pp. 3155-3169.
  34. Tripathi, D. and Bég, O.A., A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping, Proceedings of the Institution of Mechanical Engineers, Part H, J. Eng. Med., 226 (2012) pp. 631-644.
  35. Reddy, M. G., Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip, Alexandria Engineering Journal (2016) 55, pp. 1225-1234.
  36. Reddy, M. G., Velocity and thermal slip effects on MHD third order blood flow in an irregular channel through a porous medium with homogenous/ heterogeneous reactions, Nonlinear Engineering, (2017) 6, pp167-179.
  37. Reddy, M. G. and Makinde, O. D., Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel, J. Mol. Liq. (2016) 223 pp. 1242-1248.
  38. Reddy, M. G., Reddy, K. V. and Makinde, O. D., Heat transfer on MHD peristaltic rotating flow of a Jeffrey fluid in an asymmetric channel, Int. J. Appl. Comput. Math (2017) 3, pp. 3201-3227.
  39. Reddy, M. G., Reddy, K. V. and Makinde, O. D., Hydromagnetic peristaltic motion of a reacting and radiating couple stress fluid in an inclined asymmetric channel filled with a porous medium, Alexandria Engineering Journal (2016) 55, pp. 1841-1853.
  40. Reddy, M. G., Prasannakumara B. C. and Makinde, O. D., Cross diffusion impacts on hydromagnetic radiative peristaltic Carreau-Casson nanofluids flow in an irregular channel, Defect and Diffusion forum, (2017) 377, pp. 62-83.
  41. Makinde, O. D., Reddy, M. G. and Reddy, K. V., Effects of thermal radiation on MHD peristaltic motion of Walter-B fluid with heat source and slip conditions, J. Appl. Flu. Mech. (2017) 10, pp. 1105-1112.
  42. Hayat, T., Abbasi, F.M., Al-Yami, M. and Monaquel, S., Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects, J. Mol. Liq., 194 (2014) pp. 93-99.
  43. Hayat, T., Nisar, Z., Ahmad, B. and H. Yasmin, Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating, J. Magn. Magn. Mater, 395 (2015) pp. 48-58.
  44. Reddy, M.G. and Reddy, K.V., Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls, Proc. Eng., 127 (2015) pp. 1002-1009.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence