THERMAL SCIENCE
International Scientific Journal
RHEOLOGICAL PROPERTIES OF COAL WATER SLURRIES CONTAINING PETROCHEMICALS
ABSTRACT
In this paper, the rheological properties (viscosity, shear stress, and lamination) of the promising coal-water slurries containing petrochemicals based on filter cakes have been investigated experimentally. The latter are a mixture of water and solid organic wastes produced during coal preparation. It was established that the rheological properties of coal-water slurries containing petrochemicals depend on concentrations and properties of the main components (liquid and solid, flammable, and non-flammable), wetting agents (plasticizers), as well as the storage time and conditions. The rheological properties of the fuel slurries under study were compared with the known properties of coal-water slurries based on different ranks of coal and found to match or even surpass them. Coal processing wastes have high potential as prospective components of coal-water slurries containing petrochemicals in terms of not only their environmental, economic and energy performance but also their rheological properties.
KEYWORDS
PAPER SUBMITTED: 2018-04-22
PAPER REVISED: 2018-06-18
PAPER ACCEPTED: 2018-06-20
PUBLISHED ONLINE: 2018-09-30
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 5, PAGES [2939 - 2949]
- Lior, N., Energy Resources and Use: The Present Situation and Possible Paths to the Future, Energy, 33 (2008), pp. 842-857
- Kontorovich, A. E., et al., Long-Term and Medium-Term Scenarios and Factors in World Energy Perspectives for the 21st Century, Russian Geology and Geophysics, 55 (2014), pp. 534-543
- Heidari, N., Pearce, J. M., A Review of Greenhouse Gas Emission Liabilities as the Value of Renewable Energy for Mitigating Lawsuits for Climate Change Related Damages, Renewable and Sustainable Energy Reviews, 55 (2016), pp. 899-908
- Xu, M., et al., The Resource Utilization of Oily Sludge by Co-Gasification with Coal, Fuel, 126 (2014), pp. 55-61
- Hu, Y., et al., CO2, NOx and SO2 Emissions from the Combustion of Coal with High Oxygen Concentration Gases, Fuel, 79 (2000), pp. 1925-1932
- Baranova, M. P., et al., Combustion of Water and Coal Suspension Fuels of Low-Metamorphized Coals, Chemical and Petroleum Engineering, 45 (2009), pp. 554-557
- Tian H., et al., Atmospheric Emissions Estimation of Hg, As, and Se from Coal-Fired Power Plants in China, Science of the Total Environment, 409 (2011), pp. 3078-3081
- Guttikunda, S. K., Jawahar, P., Atmospheric Emissions and Pollution from the Coal-Fired Thermal Power Plants in India, Atmospheric Environment, 92 (2014), pp. 449-460
- Liu, J., et al., Co-Firing of Oil Sludge with Coal-Water Slurry in an Industrial Internal Circulating Fluidized Bed Boiler, Journal of Hazardous Materials, 167 (2009), pp. 817-823
- Chen, W., Xu, R., Clean coal technology development in China, Energy Policy, 38 (2010), pp. 2123-2130
- Wang, H., et al., A New Fluidization-Suspension Combustion Technology for Coal Water Slurry, Chemical Engineering and Processing - Process Intensification, 49 (2010), pp. 1017-1024
- Lishtvan, I. I., et al., Fuel Suspensions Based on Fuel Oil, Peat, Waste Wood, and Charcoal, Solid Fuel Chemistry, 43 (2009), pp. 1-4
- Glushkov, D.O., et al., Burning Properties of Slurry Based on Coal and Oil Processing Waste, Energy and Fuels, 30 (2016), pp. 3441-3450
- Valiullin, T.R., et al., Low Temperature Combustion of Organic Coal-Water Fuel Droplets Containing Petrochemicals while Soaring in a Combustion Chamber Model, Thermal Science, 21 (2017), 2, pp. 1057-1066
- Glushkov, D.O., et al., Minimum Temperatures for Sustainable Ignition of Coal Water Slurry Containing Petrochemicals, Applied Thermal Engineering, 96 (2016), pp. 534-546
- ***, Key World Energy Statistics. 2014, International Energy Agency, Paris, 2014
- ***, International Energy Outlook. 2014, U.S. Energy Information Administration, Washington DC, 2014
- ***, BP Statistical Review of World Energy, BP, London, 2015.
- Glushkov, D.O., et al., Organic Coal-Water Fuel: Problems and Advances (Review), Thermal Engineering, 63 (2016), pp. 707-717
- Subbarao, A., Modelling Laminar Transport Phenomena in a Casson Rheological Fluid from an Isothermal Sphere with Partial Slip, Thermal Science, 19 (2015), 5, pp. 1507-1519
- Achab, L., et al., Numerical Study of the Non-Newtonian Blood Flow in a Stenosed Artery Using Two Rheological Models, Thermal Science, 20 (2016), 2, pp. 449-460
- Agarwal, A. K., et al., Comparative Study of Macroscopic Spray Parameters and Fuel Atomization Behaviour of Straight Vegetable Oils (Jatropha), its Biodiesel and Blends, Thermal Science, 17 (2013), 1, pp. 217-232
- Vershinina, K. Yu., et al., Influence of the Preparation of Organic Coal-Water Fuel on Its Ignition, Coke and Chemistry, 59 (2016), pp. 137-145
- Feng, P., et al., Rheological Behavior of Coal Bio-Oil Slurries, Energy, 66 (2014), pp. 744-749
- Baker, G. G., et al., Hydrothermal Preparation of Low-Rank Coal-Water Fuel Slurries, Energy, 11 (1986), pp. 1267-1280
- Van Krevelen, D. W., Coal: Typology, Physics, Chemistry, Constitution, Elsevier, Amsterdam, 1993. 979 p.
- He, Q., et al., et al., The Utilization of Sewage Sludge by Blending with Coal Water Slurry, Fuel, 159 (2015), pp. 40-44
- Muñoz, J.A.D., Required Viscosity Values to Assure Proper Transportation of Crude oil by Pipeline, Energy and Fuels, 30 (2016), pp. 8850-8854