THERMAL SCIENCE
International Scientific Journal
SIMULATION OF SPRAY DROPLETS OVER THE OCEAN SURFACE
ABSTRACT
Spray droplets, ejected from the ocean surface, are known to transport in the marine atmospheric boundary-layer, in which they exchange momentum and heat with the atmosphere. This paper gives a numerical approach to description of sea spray drops. Large eddy simulation is used to perform the air-flow over the sea surface while simultaneously tracking the trajectories of Lagrangian point-particle elements designed to represent spray particles in air, the particle mo-mentum relaxation time, the suspension time, the velocity of particles in different radii and different wind speeds are discussed. This simplified model shows that the contribution of droplet particles to the air-sea momentum transport cannot be ignored. The spray droplets suspended over the sea surface are once formed, they will accelerate to the local wind speed in less than 1 second, and thereby the drops can extract momentum from the wind, reduce sea surface wind speed and eventually plunge back into the ocean. The averaged particle concentration is balanced by an equivalent production of new particles.
KEYWORDS
PAPER SUBMITTED: 2017-12-16
PAPER REVISED: 2018-01-17
PAPER ACCEPTED: 2018-02-20
PUBLISHED ONLINE: 2019-09-14
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 4, PAGES [2171 - 2177]
- Anguelova, M., Spume Drops Produced by the Wind Tearing of Wave Crests, J. Phys. Oceanogr., 29 (1999), 6, pp. 1156-1165
- Wu, J., Bubble Flux and Marine Aerosol Spectra under Various Wind Velocities, J. Geophys. Res. Oceans, 97 (1992), C2, pp. 2327-2333
- Andreas, E. L., The Temperature of Evaporating Sea Spray Droplets, J. Atmos. Sci., 52 (1995), 52, pp. 852-862
- Kelly, M., Large-Eddy Simulation Studies of Sea Spray in the Hurricane Atmospheric Boundary Layer, Ph. D. thesis, The Pennsylvania State University, State College, Pennsylvania, United States, 2007
- Zhu, J. B., et al., Modeling of Sea Spray Droplets in the Ocean, Thermal Science, 18 (2014), 5, pp. 1577-1582
- Pavlovic, R. R., A Phenomenological Model of Two-Phase (Air/Fuel) Droplet Developing and Breakup, Thermal Science, 17 (2013), 1, pp. 299-303
- Behnaz, A., Hasan, K., A Comparative Study of Variant Turbulence Modeling in the Physical Behaviors of Diesel Spray Combustion, Thermal Science, 15 (2011), 4, pp. 1081-1093
- Luo, C., et al., Heat-Transfer Characteristics of Ammonia Water Falling Film Generation outside a Ver-tical Tube, Thermal Science, 21 (2017), 3, pp. 1251-1259
- Vahid, E., Mofid, G, B., Two-Dimensional Modeling of Water Spray Cooling in Superheated Steam, Thermal Science, 12 (2013), 1, pp. 299-303
- Hossein, A., et al., Simultaneous Effects of Water Spray and Crosswind on Performance of Natural Draft Dry Cooling Tower, Thermal Science, 17 (2013), 2, pp. 443-455
- Andreas, E. L., Spray Stress Revisited, J. Phys. Oceanogr., 34 (2004), 6, pp. 1429-1440
- Andreas, E. L., A Review of the Sea Spray Generation Function for the Open Ocean, in: Atmosphere-Ocean Interactions, Vol. 1, (Ed. W. A. Perrie), WIT Press, Southampton. U. K., pp. 1-46
- Shi, J., et al., Dependence of Sea Surface Drag Coefficient on Wind-Wave Parameters, Acta Oceanol. Sin., 30 (2011), 2, pp. 14-24
- Zhao, D., et al., New Sea Spray Generation Function for Spume Droplets, J. Geophys. Res. Oceans, 111 (2006), C2, C02007
- Wu, Z. Q., et al., Investigation on Drag Coefficient of Super Critical Water Cross-Flow past Cylinder Biomass Particle at Low Reynolds Numbers, Thermal Science, 22 (2018), Suppl. 2, pp. 383-389
- Edson, J. B., Fairall, C. W., Spray Droplet Modeling: 1. Lagrangian Model Simulation of the Turbulent Transport of Evaporating Droplets, J. Geophys. Res. Oceans, 99 (1994), C12, pp. 25295-25311
- Veron, F., Ocean Spray, Annual Review of Fluid Mechanics, 47 (2015), 1, pp. 507-538
- Mueller, J. A., Veron, F., Impact of Sea Spray on Air-Sea Fluxes. Part I: Results from Stochastic Simu-lations of Sea Spray Drops over the Ocean, J. Phys. Oceanogr., 44 (2014), 11, pp. 2817-2834
- Troitskaya, Y., et al., On the Effect of Sea Spray on the Aerodynamic Surface Drag under Severe Winds, Ocean Dynam., 66 (2016), 5, pp. 659-669
- Wan, Z. H., et al., An Integrated Turbulent Simulation and Parameter Modeling Study on Sea-Spray Dynamics and Fluxes, Ocean Eng., 130 (2017), Jan., pp. 64-71