THERMAL SCIENCE
International Scientific Journal
A RELAXED NON-LINEAR INEXACT UZAWA ALGORITHM FOR STOKES PROBLEM
ABSTRACT
In this paper, we consider a Stokes problem arising in fluid dynamics and thermal science, which can be transformed to a symmetric saddle point problem by using the mixed finite element approximation. A relaxed non-linear inexact Uzawa algorithm is proposed for solving the problem, and the convergence of this algorithm is also considered. Numerical experiments are presented to show the efficiency of relaxed non-linear inexact Uzawa algorithm.
KEYWORDS
PAPER SUBMITTED: 2018-03-02
PAPER REVISED: 2018-11-20
PAPER ACCEPTED: 2018-11-22
PUBLISHED ONLINE: 2019-09-14
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 4, PAGES [2323 - 2331]
- Elman, H. C., et al., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, USA, 2005
- Silvester, D., Wathen, A., Fast Iterative Solution of Stabilised Stokes Systems, Part II: Using General Block Preconditioners, SIAM Journal on Numerical Analysis, 31 (1994), 5, pp. 1352-1367
- Maryska, J., et al., Mixed-Hybrid Finite Element Approximation of the Potential Fluid Flow Problem, Journal of Computational and Applied Mathematics. 63 (1995), 1-3, pp. 383-392
- Brezzi, F., Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin, 1991
- Benzi, M., et al., Numerical Solution of Saddle Point Problems, Acta Numerica, 14 (2005), 2, pp. 1-137
- Bramble, J. H., et al., Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems, SI-AM Journal on Numerical Analysis, 34 (1997), 3, pp. 1072-1092
- Cao, Z. H., Fast Uzawa Algorithm for Generalized Saddle Point Problems, Applied Numerical Mathe-matics, 46 (2003), 2, pp. 157-171
- Lin, Y. Q., Cao, Y. H., A New Non-Linear Uzawa Algorithm for Generalized Saddle Point Problems, Applied Mathematics and Computation, 175 (2006), 2, pp. 1432-1454
- Lu, J. F., Zhang, Z. Y., Convergence Analysis of Generalized Non-Linear Inexact Uzawa Algorithm for Stabilized Saddle Point Problems, Frontiers of Mathematics in China, 6 (2011), 3, pp. 473-492
- Lu, J. F., Zhang, Z. Y., A Modified Non-Linear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 4, pp. 1934-1957
- Bank, R., et al., A Class of Iterative Methods for Solving Saddle Point Problems, Numerische Mathe-matik, 56 (1990), 7, pp. 645-666
- Elman, H. C., et al., Algorithm 866: IFISS, a Matlab Toolbox for Modelling Incompressible Flow, ACM Transactions on Mathematical Software, 33 (2007), 2, pp. 1-18
- Young, D. M., Iterative Solution for Large Linear Systems, Academic Press, New York, USA, 1971
- He, J.-H., Homotopy Perturbation Method with an Auxiliary Term, Abstract and Applied Analysis, 2012, (2012), ID 857612
- He, J.-H., Homotopy Perturbation Method with Two Expanding Parameters, Indian Journal of Physics, 88 (2014), 2, pp. 193-196
- Wu, Y., He, J.-H., Homotopy Perturbation Method for Non-Linear Oscillators with Coordinate Depend-ent Mass, Results in Physics 10 (2018), Sept., pp. 270-271
- Liu, Z. J., et al. Hybridization of Homotopy Perturbation Method and Laplace Transformation for the Partial Differential Equations, Thermal Science, 21 (2017), 4, pp. 1843-1846
- Adamu, M. Y., Ogenyi, P., Parameterized Homotopy Perturbation Method, Non-Linear Sci. Lett. A, 8 (2017), 2, pp. 240-243
- Li, X. X., He, C. H. Homotopy Perturbation Method Coupled with the Enhanced Perturbation Method, Journal of Low Frequency Noise, Vibration & Active Control, On-line first, doi.org/10.1177/ 14613484188 00554
- Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-Linear Oscilla-tors, Journal of Low Frequency Noise, Vibration & Active Control, On-line first, doi.org/10.1177/ 1461348418 811028