THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

EFFECTS OF POROSITY AND HEAT GENERATION ON FREE CONVECTION IN A POROUS TRAPEZOIDAL CAVITY

ABSTRACT
The problem of laminar free convection in a trapezoidal enclosure, filled with a fluidsaturated porous medium and with internal heat generation has been investigated using a penalty finite element analysis. The enclosure bottom wall is heated at a constant temperature and the top wall is subjected to a constant cold temperature whereas the left inclined wall is considered to be non-isothermal and the right inclined wall is isothermally cooled. The effects of the porosity of the medium and heat generation on the isotherms and streamlinesare investigated. The rate of heat transfer from the walls of the cavity is examined as well. The Prandtl number of the fluid is chosen to be 0.7 (air) whereas the value of the Rayleigh number is selected to be 105.
KEYWORDS
PAPER SUBMITTED: 2017-09-21
PAPER REVISED: 2017-10-22
PAPER ACCEPTED: 2017-11-01
PUBLISHED ONLINE: 2017-12-03
DOI REFERENCE: https://doi.org/10.2298/TSCI170324245M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 3, PAGES [1801 - 1811]
REFERENCES
  1. Lam, S., Gani, R., Simons, J., Experimental and numerical studies of natural convection in trapezoidal cavities, ASME J. Heat Transfer, 111 (1989), pp. 372-377
  2. Arici, M.E., Sahin, B., Natural convection heat transfer in a partially divided trapezoidal enclosure, Thermal Science, 13 (2009), 4, pp. 213-220
  3. Lasfer, K., Bouzaiane, M., Lili, T., Numerical study of laminar natural convection in a sideheated trapezoidal cavity at various inclined heated sidewalls, Heat Transfer Eng., 31 (2010), 5, pp. 362-373
  4. Selimefendigil, F., Öztop, H.F., Chamkha, A.J., Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder, International Communications in Heat and Mass Transfer, 87 (2017) pp. 40-51
  5. Weir, G.J., The relative importance of convective and conductive effects in two-phase geothermal fields, Transport Porous Media, 16 (1994), pp. 289-298
  6. Gao, D., Chen, Z., Lattice boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media, Int. J. Therm. Sci., 50 (2011), pp. 493-501
  7. Abdesslem, J., Khalifa, S., Abdelaziz, N., Abdallah, M., Radiative properties effects on unsteady natural convection inside a saturated porous medium: application for porous heat exchangers, Energy, 61 (2013), pp. 224-233
  8. Khaled, A.R.A., Vafai, K., The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transfer, 46 (2003), pp. 4989-5003
  9. Mousa, M.M., Finite element investigation of stationary natural convection of light and heavy water in a vessel containing heated rods, Zeitschrift für Naturforschung A, 67a (2012), 6/7, pp. 421-427
  10. Darvishi, M.T., Gorla, R.R., Khani, F., Aziz, A., Natural convection heat transfer in a partially divided trapezoidal enclosure, Thermal Science, 19 (2015), 2, pp. 669-678
  11. Rahman, M.M., Oztop, H.F., Saidur, R., Mekhilef, S., Al-Salem, K., Unsteady mixed convection in a porous media filled lid-driven cavity heated by a semi-circular heaters, Thermal Science, 19 (2015), 5, pp. 1761-1768
  12. Mousa, M.M., Modeling of laminar buoyancy convection in a square cavity containing an obstacle, Bulletin of the Malaysian Mathematical Sciences Society, 39 (2016), 2, pp. 483-498
  13. Selimefendigil, F., Modeling and prediction of effects of time-periodic heating zone on mixed convection in a lid-driven cavity filled with fluid-saturated porous media, Arab. J. Sc.i Eng., 41 (2016), 11, pp. 4701-4718
  14. Selimefendigil, F., Ismael, M.A., Chamkha, A.J., Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder, International Journal of Mechanical Sciences, 124-125 (2017), pp. 95-108
  15. Ismael, M.A., Selimefendigil, F., Chamkha, A.J., Mixed convection in a vertically layered fluidporous medium enclosure with two inner rotating cylinders, Journal of Porous Media, 20 (2017), 6, pp. 491-511
  16. Sheremet, M.A., Pop, I., Free convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno's mathematical mode, Thermal Science, 21 (2017), 3, pp. 1183-1193
  17. Aramayo, A.M., Esteban, S., Cardon, L., Conjugate heat transfer in a two stage trapezoidal cavity stack, Lat. Am. Appl. Res., 39 (2009), pp. 1-9
  18. Papanicolaou, E., Belessiotis, V., Double-diffusive natural convection in an asymmetric trapezoidal enclosure: unsteady behavior in the laminar and the turbulent-flow regime, Int. J. Heat Mass Transfer, 48 (2005), pp. 191-209
  19. Reddy K.S., Kumar, K.R., Estimation of convective and radiative heat losses from an inverted trapezoidal cavity receiver of solar linear fresnel reflector system, Int. J. Therm. Sci., 80 (2014), pp. 48-57
  20. Hossain, M.A., Wilson, M., Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation, Int. J. Therm. Sci., 41 (2002), pp. 447-454
  21. Mousa, M.M., Finite element simulation of an unimolecular thermal decomposition inside a reactor, Journal of Applied Mathematics and Physics, 4 (2016), 2, pp. 328- 340
  22. Basak, T., Ayappa, K.G., Influence of internal convection during microwave thawing of cylinders, AIChE J., 47 (2001), pp. 835-850
  23. Nassehi, V., Parvazinia, M., Finite Element Method in Engineering, Imperial College Press, London, 2010
  24. Parvin, S., Nasrin, R., Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle, Nonlinear Analysis: Modelling and Control 16 (2011), 1, pp. 89-99
  25. Liu, G.R., Quek, S.S., The Finite Element Method: A Practical Course, Butterworth-Heinemann, New York, 2003

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence