International Scientific Journal

External Links


The remarkable enhancement in heat transfer capabilities of conventional fluids with the addition of nanosized metallic and non-metallic particles appealed the attention of investigators towards the suspension of hybrid nanocomposites as a substitute of mono particles. Although these fluids manifest captivating thermal characteristics, the drawbacks associated with their application include high frictional effects and pumping power requirements. The major cause of aforementioned problems is the elevated viscosity. The current study summarizes the work of different investigators and discusses the critical factors affecting the viscosity of hybrid nanofluids such as temperature, particle concentration, pH value, particle size and morphology with a concise discussion on the reasons reported in the literature for the viscosity augmentation. Furthermore, the models developed by different investigators have also been discoursed with specified limitations. Comparison between the viscosity of mono and hybrid nanofluid is also presented comprehensively. It is observed that most of the studies considered the effect of particle concentration and temperature that the effect of these factors is more significant. Water-based nanofluids delivered better results in comparison of ethylene glycol-based nanofluids while the oil-based nanofluids preferred in the applications where the pumping power is not more significant. It has been noticed that the fluids containing tube shaped nanoparticles comparatively showed enhanced viscosity than that of spherically shaped nanoparticles. It has also been observed that the studies preferred to develop their own models for the prediction of viscosity rather than to use the existing models and failed to provide a universal correlation.
PAPER REVISED: 2018-12-19
PAPER ACCEPTED: 2018-12-20
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 3, PAGES [1713 - 1754]
  1. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congr. Expo. (1995). doi:10.1115/1.1532008.
  2. Y. Bakhshan, F. Samari, M. Ghaemi, S. Ghafarigousheh, A. Kakoee, Experimental Study on the Thermal Conductivity of Silver Nanoparticles Synthesized Using Sargassum Angostifolium, Iran. J. Sci. Technol. Trans. Mech. Eng. 1 (2018). doi:10.1007/s40997-018-0153-1.
  3. A. Vakilinejad, M.A. Aroon, M. Al-Abri, H. Bahmanyar, M.T.Z. Myint, G.R. Vakili-Nezhaad, Experimental and theoretical investigation of thermal conductivity of some water-based nanofluids, Chem. Eng. Commun. 205 (2018) 610-623. doi:10.1080/00986445.2017.1407922.
  4. H.M. Ali, H. Babar, T.R. Shah, M.U. Sajid, M.A. Qasim, S. Javed, Preparation techniques of TiO2 nanofluids and challenges: A review, Appl. Sci. (2018). doi:10.3390/app8040587.
  5. J. Jin, M. Hatami, D. Jing, Experimental investigation and prediction of the thermal conductivity of water-based oxide nanofluids with low volume fractions, J. Therm. Anal. Calorim. 3456789 (2018) 1-13. doi:10.1007/s10973-018-7045-x.
  6. M.U. Sajid, H.M. Ali, Thermal conductivity of hybrid nanofluids: A critical review, Int. J. Heat Mass Transf. 126 (2018) 211-234. doi:10.1016/j.ijheatmasstransfer.2018.05.021.
  7. C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng. 27 (2007) 1501-1506. doi:10.1016/j.applthermaleng.2006.09.028.
  8. L.Y. Jeng, T.P. Teng, Performance evaluation of a hybrid cooling system for electronic chips, Exp. Therm. Fluid Sci. 45 (2013) 155-162. doi:10.1016/j.expthermflusci.2012.10.020.
  9. N. Ahammed, L.G. Asirvatham, S. Wongwises, Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger, Exp. Therm. Fluid Sci. 74 (2016) 81-90. doi:10.1016/j.expthermflusci.2015.11.023.
  10. M.M. Sarafraz, A. Arya, F. Hormozi, V. Nikkhah, On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study, Appl. Therm. Eng. 112 (2017) 1373-1381. doi:10.1016/j.applthermaleng.2016.10.196.
  11. H.M. Ali, T.R. Shah, H. Babar, Z.A. Khan, Application of Nanofluids for Thermal Management of Photovoltaic Modules: A Review, Microfluid. Nanofluidics. (2018). doi:10.5772/intechopen.74967.
  12. R.C. Shende, S. Ramaprabhu, Application of Few-Layered Reduced Graphene Oxide Nanofluid as a Working Fluid for Direct Absorption Solar Collectors, J. Nanosci. Nanotechnol. 17 (2017) 1233-1239. doi:10.1166/jnn.2017.12695.
  13. A. Zeiny, H. Jin, L. Bai, G. Lin, D. Wen, A comparative study of direct absorption nanofluids for solar thermal applications, Sol. Energy. 161 (2018) 74-82. doi:10.1016/j.solener.2017.12.037.
  14. V. Khullar, H. Tyagi, P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector, J. Nanotechnol. Eng. Med. 3 (2013) 031003. doi:10.1115/1.4007387.
  15. D. Han, Z. Meng, D. Wu, C. Zhang, H. Zhu, Thermal properties of carbon black aqueous nanofluids for solar absorption, Nanoscale Res. Lett. 6 (2012) 1-7. doi:10.1186/1556-276X-6-457.
  16. J. Buongiorno, L.-W. Hu, S.J. Kim, R. Hannink, B. Truong, E. Forrest, Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps, Nucl. Technol. 162 (2008) 80-91. doi:10.13182/NT08-A3934.
  17. K. Hadad, Z. Kowsar, Twofold application of nanofluids as the primary coolant and reactivity controller in a PWR reactor: Case study VVER-1000 in normal operation, Ann. Nucl. Energy. 97 (2016) 179-182. doi:10.1016/j.anucene.2016.07.008.
  18. H. Saadati, K. Hadad, A. Rabiee, Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid, Nucl. Eng. Technol. 50 (2018) 639-647. doi:10.1016/
  19. M. Ebrahimian, G.R. Ansarifar, Investigation of the nano fluid effects on heat transfer characteristics in nuclear reactors with dual cooled annular fuel using CFD (Computational Fluid Dynamics) modeling, Energy. 98 (2016) 1-14. doi:10.1016/
  20. K.M. Mahmud, S.A. Yudistirani, A.I. Ramadhan, Analytical Study of Forced Convection in Fluid Cooling Use Nanofluid Al 2 O 3-Water on Nuclear Reactor Core Based Fuel Cylinder with Hexagonal Sub Channel, Int. J. Energy Eng. 6 (2016) 8-15.
  21. L.L. Manetti, M.T. Stephen, P.A. Beck, E.M. Cardoso, Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid, Exp. Therm. Fluid Sci. 87 (2017) 191-200. doi:10.1016/j.expthermflusci.2017.04.018.
  22. J. Ham, H. Kim, Y. Shin, H. Cho, Experimental investigation of pool boiling characteristics in Al2O3nanofluid according to surface roughness and concentration, Int. J. Therm. Sci. 114 (2017) 86-97. doi:10.1016/j.ijthermalsci.2016.12.009.
  23. H.M. Ali, M.M. Generous, F. Ahmad, M. Irfan, Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids, Appl. Therm. Eng. 113 (2017) 1146-1151. doi:10.1016/j.applthermaleng.2016.11.127.
  24. M. Karimzadehkhouei, M. Shojaeian, K. Şendur, M.P. Meng��, A. Koşar, The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling, Int. J. Heat Mass Transf. 109 (2017) 157-166. doi:10.1016/j.ijheatmasstransfer.2017.01.116.
  25. H.M. Ali, M.D. Azhar, M. Saleem, Q.S. Saeed, A. Saieed, Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids, Therm. Sci. 19 (2015) 2039-2048. doi:10.2298/TSCI150526130A.
  26. D.G. Subhedar, B.M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant, Case Stud. Therm. Eng. 11 (2018) 26-34. doi:10.1016/j.csite.2017.11.009.
  27. A.M. Hussein, R.A. Bakar, K. Kadirgama, Study of forced convection nanofluid heat transfer in the automotive cooling system, Case Stud. Therm. Eng. 2 (2014) 50-61. doi:10.1016/j.csite.2013.12.001.
  28. M. Hemmat Esfe, S. Saedodin, J. Shahram, Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications, Phys. E Low-Dimensional Syst. Nanostructures. 90 (2017) 194-203. doi:10.1016/j.physe.2017.02.015.
  29. A.M. Hussein, H.K. Dawood, R.A. Bakara, K. Kadirgamaa, Numerical study on turbulent forced convective heat transfer using nanofluids TiO2in an automotive cooling system, Case Stud. Therm. Eng. 9 (2017) 72-78. doi:10.1016/j.csite.2016.11.005.
  30. D.R. Ray, D.K. Das, Superior Performance of Nanofluids in an Automotive Radiator, J. Therm. Sci. Eng. Appl. 6 (2014) 041002. doi:10.1115/1.4027302.
  31. H. Saleh, E. Alali, A. Ebaid, Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017) 206-212. doi:10.1016/j.jaubas.2016.12.001.
  32. M. KOTHANDAPANI, J. PRAKASH, The Peristaltic Transport of Carreau Nanofluids Under Effect of a Magnetic Field in a Tapered Asymmetric Channel: Application of the Cancer Therapy, J. Mech. Med. Biol. 15 (2015) 1550030. doi:10.1142/S021951941550030X.
  33. M.A. ABBAS, Y.Q. BAI, M.M. RASHIDI, M.M. BHATTI, Application of Drug Delivery in Magnetohydrodynamics Peristaltic Blood Flow of Nanofluid in a Non-Uniform Channel, J. Mech. Med. Biol. 16 (2016) 1650052. doi:10.1142/S0219519416500524.
  34. W.A. Khan, M.J. Uddin, A.I. Ismail, Bioconvective Non-Newtonian Nanofluid Transport Over a Vertical Plate in a Porous Medium Containing Microorganisms in a Moving Free Stream, J. Porous Media. 18 (2015) 389-399. doi:10.1615/JPorMedia.v18.i4.30.
  35. N.S. AKBAR, M. RAZA, R. ELLAHI, Anti-Bacterial Applications for New Thermal Conductivity Model in Arteries With Cnt Suspended Nanofluid, J. Mech. Med. Biol. 16 (2016) 1650063. doi:10.1142/S0219519416500639.
  36. S.M. Jafari, S.S. Jabari, D. Dehnad, S.A. Shahidi, Heat Transfer Enhancement in Thermal Processing of Tomato Juice by Application of Nanofluids, Food Bioprocess Technol. 10 (2017) 307-316. doi:10.1007/s11947-016-1816-9.
  37. S.S. Jabari, S.M. Jafari, D. Dehnad, S.A. Shahidi, Changes in lycopene content and quality of tomato juice during thermal processing by a nanofluid heating medium, J. Food Eng. 230 (2018) 1-7. doi:10.1016/j.jfoodeng.2018.02.020.
  38. S.M. Jafari, F. Saremnejad, D. Dehnad, A.M. Rashidi, Evaluation of performance and thermophysical properties of alumina nanofluid as a new heating medium for processing of food products, J. Food Process Eng. 40 (2017) 1-9. doi:10.1111/jfpe.12544.
  39. Z. Taghizadeh-Tabari, S. Zeinali Heris, M. Moradi, M. Kahani, The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries, Renew. Sustain. Energy Rev. 58 (2016) 1318-1326. doi:10.1016/j.rser.2015.12.292.
  40. S.M. Jafari, F. Saremnejad, D. Dehnad, Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties, Innov. Food Sci. Emerg. Technol. 42 (2017) 173-179. doi:10.1016/j.ifset.2017.04.003.
  41. B. Shen, A.J. Shih, S.C. Tung, B. Shen, A.J. Shih, S.C. Tung, B.I.N. Shen, A.J. Shih, S.C. Tung, Application of Nanofluids in Minimum Quantity Lubrication Grinding Application of Nanofluids in Minimum Quantity Lubrication Grinding, 2004 (2016) 1-7. doi:10.1080/10402000802071277.
  42. N.A.C. Sidik, S. Samion, J. Ghaderian, M.N.A.W.M. Yazid, Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review, Int. J. Heat Mass Transf. 108 (2017) 79-89. doi:10.1016/j.ijheatmasstransfer.2016.11.105.
  43. Y. Shokoohi, E. Shekarian, Application of Nanofluids in Machining Processes -A Review, J. Nanosci. Technol. 2 (2016) 59-63.
  44. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Progress of Nanofluid Application in Machining: A Review, Mater. Manuf. Process. 30 (2015) 813-828. doi:10.1080/10426914.2014.973583.
  45. M.K. Sinha, R. Madarkar, S. Ghosh, P.V. Rao, Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication, J. Clean. Prod. 141 (2017) 1359-1375. doi:10.1016/j.jclepro.2016.09.212.
  46. D.P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Appl. Energy. 86 (2009) 2566-2573. doi:10.1016/j.apenergy.2009.03.021.
  47. E. Firouzfar, M. Soltanieh, S.H. Noie, S.H. Saidi, Energy saving in HVAC systems using nanofluid, Appl. Therm. Eng. 31 (2011) 1543-1545. doi:10.1016/j.applthermaleng.2011.01.029.
  48. H. Xie, B. Jiang, B. Liu, Q. Wang, J. Xu, F. Pan, An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts, Nanoscale Res. Lett. 11 (2016). doi:10.1186/s11671-016-1546-y.
  49. E. Bellos, C. Tzivanidis, Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids, Sustain. Energy Technol. Assessments. 26 (2018) 105-115. doi:10.1016/j.seta.2017.10.005.
  50. T. Tayebi, A.J. Chamkha, Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids, Numer. Heat Transf. Part A Appl. 71 (2017) 1159-1173. doi:10.1080/10407782.2017.1337990.
  51. B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid, Adv. Mech. Eng. 2014 (2014). doi:10.1155/2014/147059.
  52. S.H. Qing, W. Rashmi, M. Khalid, T.C.S.M. Gupta, M. Nabipoor, M.T. Hajibeigy, Thermal conductivity and electrical properties of Hybrid SiO2-graphene naphthenic mineral oil nanofluid as potential transformer oil, Mater. Res. Express. 4 (2017). doi:10.1088/2053-1591/aa550e.
  53. B. Takabi, A.M. Gheitaghy, P. Tazraei, Hybrid Water-Based Suspension of Al2O3 and Cu Nanoparticles on Laminar Convection Effectiveness, J. Thermophys. Heat Transf. 30 (2016) 523-532. doi:10.2514/1.T4756.
  54. A. Asadi, M. Asadi, A. Rezaniakolaei, L.A. Rosendahl, M. Afrand, S. Wongwises, Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation, Int. J. Heat Mass Transf. 117 (2018) 474-486. doi:10.1016/j.ijheatmasstransfer.2017.10.036.
  55. M. Hemmat Esfe, F. Zabihi, H. Rostamian, S. Esfandeh, Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes, J. Mol. Liq. 249 (2018) 677-687. doi:10.1016/j.molliq.2017.11.020.
  56. A. Ahmadi Nadooshan, H. Eshgarf, M. Afrand, Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior, J. Mol. Liq. 253 (2018) 169-177. doi:10.1016/j.molliq.2018.01.012.
  57. K.Y. Leong, I. Razali, K.Z. Ku Ahmad, H.C. Ong, M.J. Ghazali, M.R. Abdul Rahman, Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach, Int. Commun. Heat Mass Transf. 90 (2018) 23-28. doi:10.1016/j.icheatmasstransfer.2017.10.005.
  58. M.H. Esfe, S. Esfandeh, M. Afrand, M. Rejvani, S.H. Rostamian, Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications, Appl. Therm. Eng. 133 (2018) 452-463. doi:10.1016/j.applthermaleng.2017.11.131.
  59. N.N. Esfahani, D. Toghraie, M. Afrand, A new correlation for predicting the thermal conductivity of ZnO-Ag (50%-50%)/water hybrid nanofluid: An experimental study, Powder Technol. 323 (2018) 367-373. doi:10.1016/j.powtec.2017.10.025.
  60. M. Hemmat Esfe, A.A. Abbasian Arani, M. Firouzi, Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%:70%) hybrid nanofluid, J. Mol. Liq. 244 (2017) 252-261. doi:10.1016/j.molliq.2017.08.087.
  61. M. Bahiraei, A. Godini, A. Shahsavar, Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid, J. Taiwan Inst. Chem. Eng. 84 (2018) 149-161. doi:10.1016/j.jtice.2018.01.014.
  62. A.A. Minea, W.M. El-Maghlany, Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison, Renew. Energy. 120 (2018) 350-364. doi:10.1016/j.renene.2017.12.093.
  63. J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: Recent research, development and applications, Renew. Sustain. Energy Rev. 43 (2015) 164-177. doi:10.1016/j.rser.2014.11.023.
  64. N.A.C. Sidik, I.M. Adamu, M.M. Jamil, G.H.R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review, Int. Commun. Heat Mass Transf. 78 (2016) 68-79. doi:10.1016/j.icheatmasstransfer.2016.08.019.
  65. A.A. Minea, Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison, Renew. Sustain. Energy Rev. 71 (2017) 426-434. doi:10.1016/j.rser.2016.12.072.
  66. L.S. Sundar, K. V. Sharma, M.K. Singh, A.C.M. Sousa, Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor - A review, Renew. Sustain. Energy Rev. 68 (2017) 185-198. doi:10.1016/j.rser.2016.09.108.
  67. K.Y. Leong, K.Z. Ku Ahmad, H.C. Ong, M.J. Ghazali, A. Baharum, Synthesis and thermal conductivity characteristic of hybrid nanofluids - A review, Renew. Sustain. Energy Rev. 75 (2017) 868-878. doi:10.1016/j.rser.2016.11.068.
  68. M.H. Hamzah, N.A.C. Sidik, T.L. Ken, R. Mamat, G. Najafi, Factors affecting the performance of hybrid nanofluids: A comprehensive review, Int. J. Heat Mass Transf. 115 (2017) 630-646. doi:10.1016/j.ijheatmasstransfer.2017.07.021.
  69. J.A. Ranga Babu, K.K. Kumar, S. Srinivasa Rao, State-of-art review on hybrid nanofluids, Renew. Sustain. Energy Rev. 77 (2017) 551-565. doi:10.1016/j.rser.2017.04.040.
  70. G.H. Lee, J.H. Park, C.K. Rhee, W.W. Kim, Fabrication of Al Nano Powders by Pulsed Wire Evaporation (PWE) Method, Ind. Eng. Chem. Res. (2003).
  71. P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Magnetic and gas sensing property of nanosized NiFe2O4 powders synthesized by pulsed wire discharge, J. Nanoparticle Res. 8 (2006) 29-35. doi:10.1007/s11051-005-5427-z.
  72. S. Aberoumand, A. Jafarimoghaddam, Tungsten (III) oxide (WO3) - Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength, Alexandria Eng. J. 57 (2018) 121-130. doi:10.1016/j.aej.2016.11.003.
  73. B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics, Ceram. Int. 39 (2013) 6415-6425. doi:10.1016/j.ceramint.2013.01.069.
  74. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys. 9 (2009) 131-139. doi:10.1016/j.cap.2007.12.008.
  75. B. Wei, C. Zou, X. Yuan, X. Li, Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications, Int. J. Heat Mass Transf. 107 (2017) 281-287. doi:10.1016/j.ijheatmasstransfer.2016.11.044.
  76. D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci. 72 (2016) 190-196. doi:10.1016/j.expthermflusci.2015.11.009.
  77. R. Kiruba, S. Vinod, A.W. Zaibudeen, R.V. Solomon, J. Philip, Stability and rheological properties of hybrid γ-Al2O3 nanofluids with cationic polyelectrolyte additives, Colloids Surfaces A Physicochem. Eng. Asp. 555 (2018) 63-71. doi:10.1016/j.colsurfa.2018.06.044.
  78. S. Sarbolookzadeh Harandi, A. Karimipour, M. Afrand, M. Akbari, A. D'Orazio, An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration, Int. Commun. Heat Mass Transf. 76 (2016) 171-177. doi:10.1016/j.icheatmasstransfer.2016.05.029.
  79. L. Syam Sundar, M.K. Singh, M.C. Ferro, A.C.M. Sousa, Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids, Int. Commun. Heat Mass Transf. 84 (2017) 1-10. doi:10.1016/j.icheatmasstransfer.2017.03.001.
  80. P. Van Trinh, N.N. Anh, N.T. Hong, P.N. Hong, P.N. Minh, B.H. Thang, Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr-CNT hybrid material, J. Mol. Liq. 269 (2018) 344-353. doi:10.1016/j.molliq.2018.08.071.
  81. K. Bashirnezhad, S. Bazri, M.R. Safaei, M. Goodarzi, M. Dahari, O. Mahian, A.S. Dalkiliça, S. Wongwises, Viscosity of nanofluids: A review of recent experimental studies, Int. Commun. Heat Mass Transf. 73 (2016) 114-123. doi:10.1016/j.icheatmasstransfer.2016.02.005.
  82. P.Y. Yu, Y.P. Zheng, L. Lan, The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification, Soft Nanosci. Lett. 01 (2011) 46-50. doi:10.4236/snl.2011.12008.
  83. M. Premalatha, A.K.S. Jeevaraj, Preparation and characterization of hydroxyl (-OH) functionalized multi-walled carbon nanotube (MWCNT)-Dowtherm A nanofluids, Part. Sci. Technol. 36 (2018) 523-528. doi:10.1080/02726351.2016.1267286.
  84. M. Afrand, K. Nazari Najafabadi, M. Akbari, Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines, Appl. Therm. Eng. 102 (2016) 45-54. doi:10.1016/j.applthermaleng.2016.04.002.
  85. K. Motahari, M. Abdollahi Moghaddam, M. Moradian, Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2(20-80)/20W50 hybrid nano-lubricant, Chinese J. Chem. Eng. 26 (2018) 137-143. doi:10.1016/j.cjche.2017.06.011.
  86. M. Hemmat Esfe, H. Rostamian, M. Reza Sarlak, A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines, J. Mol. Liq. 254 (2018) 406-413. doi:10.1016/j.molliq.2017.11.135.
  87. A. Shahsavar, M. Saghafian, M.R. Salimpour, M.B. Shafii, Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes, Heat Mass Transf. 52 (2016) 2293-2301. doi:10.1007/s00231-015-1743-8.
  88. M.F. Nabil, W.H. Azmi, K. Abdul Hamid, R. Mamat, F.Y. Hagos, An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture, Int. Commun. Heat Mass Transf. 86 (2017) 181-189. doi:10.1016/j.icheatmasstransfer.2017.05.024.
  89. L.S. Sundar, G.O. Irurueta, E. Venkata Ramana, M.K. Singh, A.C.M. Sousa, Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite, Case Stud. Therm. Eng. 7 (2016) 66-77. doi:10.1016/j.csite.2016.03.001.
  90. M. Hemmat Esfe, M. Afrand, W.M. Yan, H. Yarmand, D. Toghraie, M. Dahari, Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20-80)-SAE40 hybrid nano-lubricant, Int. Commun. Heat Mass Transf. 76 (2016) 133-138. doi:10.1016/j.icheatmasstransfer.2016.05.015.
  91. M. Hemmat Esfe, M. Afrand, S.H. Rostamian, D. Toghraie, Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions, Exp. Therm. Fluid Sci. 80 (2017) 384-390. doi:10.1016/j.expthermflusci.2016.07.011.
  92. M. Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4-Ag/EG hybrid nanofluid: An experimental study, Exp. Therm. Fluid Sci. 77 (2016) 38-44. doi:10.1016/j.expthermflusci.2016.04.007.
  93. M. Baghbanzadeh, A. Rashidi, A.H. Soleimanisalim, D. Rashtchian, Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT, Thermochim. Acta. 578 (2014) 53-58. doi:10.1016/j.tca.2014.01.004.
  94. O. Soltani, M. Akbari, Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study, Phys. E Low-Dimensional Syst. Nanostructures. 84 (2016) 564-570. doi:10.1016/j.physe.2016.06.015.
  95. K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, K. V. Sharma, Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids, Int. J. Heat Mass Transf. 116 (2018) 1143-1152. doi:10.1016/j.ijheatmasstransfer.2017.09.087.
  96. H. Yarmand, S. Gharehkhani, S.F.S. Shirazi, M. Goodarzi, A. Amiri, W.S. Sarsam, M.S. Alehashem, M. Dahari, S.N. Kazi, Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid, Int. Commun. Heat Mass Transf. 77 (2016) 15-21. doi:10.1016/j.icheatmasstransfer.2016.07.010.
  97. M.S. Kumar, V. Vasu, A.V. Gopal, Thermal conductivity and rheological studies for Cu-Zn hybrid nanofluids with various basefluids, J. Taiwan Inst. Chem. Eng. 66 (2016) 321-327. doi:10.1016/j.jtice.2016.05.033.
  98. M. Hemmat Esfe, M.H. Hajmohammad, P. Razi, M.R.H. Ahangar, A.A.A. Arani, The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM, Int. Commun. Heat Mass Transf. 79 (2016) 128-134. doi:10.1016/j.icheatmasstransfer.2016.09.015.
  99. M. Hemmat Esfe, M.H. Hajmohammad, Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM, J. Mol. Liq. 238 (2017) 545-552. doi:10.1016/j.molliq.2017.04.056.
  100. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids, Int. Commun. Heat Mass Transf. 52 (2014) 73-83. doi:10.1016/j.icheatmasstransfer.2014.01.012.
  101. H. Yarmand, S. Gharehkhani, S.F.S. Shirazi, A. Amiri, E. Montazer, H.K. Arzani, R. Sadri, M. Dahari, S.N. Kazi, Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties, Int. Commun. Heat Mass Transf. 72 (2016) 10-15. doi:10.1016/j.icheatmasstransfer.2016.01.004.
  102. E. Dardan, M. Afrand, A.H. Meghdadi Isfahani, Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power, Appl. Therm. Eng. 109 (2016) 524-534. doi:10.1016/j.applthermaleng.2016.08.103.
  103. S.K. Mechiri, V. Vasu, A. Venu Gopal, Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu-Zn hybrid nanoparticles, Exp. Heat Transf. 30 (2017) 205-217. doi:10.1080/08916152.2016.1233147.
  104. L.S. Sundar, E. Venkata Ramana, M.P.F. Graça, M.K. Singh, A.C.M. Sousa, Nanodiamond-Fe3O4nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities, Int. Commun. Heat Mass Transf. 73 (2016) 62-74. doi:10.1016/j.icheatmasstransfer.2016.02.013.
  105. L. Syam Sundar, M.K. Singh, M.C. Ferro, A.C.M. Sousa, Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids, Int. Commun. Heat Mass Transf. 84 (2017) 1-10. doi:10.1016/j.icheatmasstransfer.2017.03.001.
  106. S. Akilu, A.T. Baheta, K. V. Sharma, Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions, J. Mol. Liq. 246 (2017) 396-405. doi:10.1016/j.molliq.2017.09.017.
  107. H. Yarmand, S. Gharehkhani, G. Ahmadi, S.F.S. Shirazi, S. Baradaran, E. Montazer, M.N.M. Zubir, M.S. Alehashem, S.N. Kazi, M. Dahari, Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer, Energy Convers. Manag. 100 (2015) 419-428. doi:10.1016/j.enconman.2015.05.023.
  108. N. Ahammed, L.G. Asirvatham, S. Wongwises, Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler, Int. J. Heat Mass Transf. 103 (2016) 1084-1097. doi:10.1016/j.ijheatmasstransfer.2016.07.070.
  109. M.N. Chandran, S. Manikandan, K.S. Suganthi, K.S. Rajan, Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications, Energy. 140 (2017) 27-39. doi:10.1016/
  110. A. Asadi, M. Asadi, A. Rezaniakolaei, L.A. Rosendahl, S. Wongwises, An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid, Appl. Therm. Eng. 129 (2018) 577-586. doi:10.1016/j.applthermaleng.2017.10.074.
  111. M.S. Tahat, A.C. Benim, Experimental Analysis on Thermophysical Properties of Al2O3/CuO Hybrid Nano Fluid with its Effects on Flat Plate Solar Collector, Defect Diffus. Forum. 374 (2017) 148-156. doi:10.4028/
  112. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties, Colloids Surfaces A Physicochem. Eng. Asp. 388 (2011) 41-48. doi:10.1016/j.colsurfa.2011.08.005.
  113. M. Hemmat Esfe, A.A. Abbasian Arani, M. Rezaie, W.M. Yan, A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid, Int. Commun. Heat Mass Transf. 66 (2015) 189-195. doi:10.1016/j.icheatmasstransfer.2015.06.003.
  114. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: An experimental study, Int. J. Heat Mass Transf. 117 (2018) 223-234. doi:10.1016/j.ijheatmasstransfer.2017.09.109.
  115. G.M. Moldoveanu, A.A. Minea, M. Iacob, C. Ibanescu, M. Danu, Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid, Thermochim. Acta. 659 (2018) 203-212. doi:10.1016/j.tca.2017.12.008.
  116. S. Kannaiyan, C. Boobalan, A. Umasankaran, A. Ravirajan, S. Sathyan, T. Thomas, Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids, J. Mol. Liq. 244 (2017) 469-477. doi:10.1016/j.molliq.2017.09.035.
  117. V. Kumar, A.K. Tiwari, S.K. Ghosh, Effect of variable spacing on performance of plate heat exchanger using nanofluids, Energy. 114 (2016) 1107-1119. doi:10.1016/
  118. M.F. Nabil, W.H. Azmi, K.A. Hamid, R. Mamat, Heat transfer and friction factor of composite TiO 2 -SiO 2 nanofluids in water-ethylene glycol (60:40) mixture, IOP Conf. Ser. Mater. Sci. Eng. 257 (2017) 012066. doi:10.1088/1757-899X/257/1/012066.
  119. A.A. Hussien, M.Z. Abdullah, N.M. Yusop, M.A. Al-Nimr, M.A. Atieh, M. Mehrali, Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube, Int. J. Heat Mass Transf. 115 (2017) 1121-1131. doi:10.1016/j.ijheatmasstransfer.2017.08.120.
  120. K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, Experimental investigation of nanoparticle mixture ratios on TiO2-SiO2 nanofluids heat transfer performance under turbulent flow, Int. J. Heat Mass Transf. 118 (2018) 617-627. doi:10.1016/j.ijheatmasstransfer.2017.11.036.
  121. S. Sharma, A.K. Tiwari, S. Tiwari, R. Prakash, Viscosity of hybrid nanofluids: Measurement and comparison, J. Mech. Eng. Sci. ISSN. 12 (2018) 2289-4659. doi:10.15282/jmes.12.2.2018.8.0320.
  122. A.S. Dalkılıç, Ö. Açıkgöz, B.O. Küçükyıldırım, A.A. Eker, B. Lüleci, C. Jumpholkul, S. Wongwises, Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids, Int. Commun. Heat Mass Transf. 97 (2018) 30-38. doi:10.1016/j.icheatmasstransfer.2018.07.007.
  123. A. Afshari, M. Akbari, D. Toghraie, M.E. Yazdi, Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%): New correlation and margin of deviation, J. Therm. Anal. Calorim. 132 (2018) 1001-1015. doi:10.1007/s10973-018-7009-1.
  124. S. Ghasemi, A. Karimipour, Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid, Appl. Therm. Eng. 128 (2018) 189-197. doi:10.1016/j.applthermaleng.2017.09.021.
  125. S. Atashrouz, G. Pazuki, Y. Alimoradi, Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system, Fluid Phase Equilib. 372 (2014) 43-48. doi:10.1016/j.fluid.2014.03.031.
  126. H.D. Koca, S. Doganay, A. Turgut, I.H. Tavman, R. Saidur, I.M. Mahbubul, Effect of particle size on the viscosity of nanofluids: A review, Renew. Sustain. Energy Rev. 82 (2018) 1664-1674. doi:10.1016/j.rser.2017.07.016.
  127. P.N. Nwosu, J. Meyer, M. Sharifpur, A Review and Parametric Investigation Into Nanofluid Viscosity Models, J. Nanotechnol. Eng. Med. 5 (2014) 031008. doi:10.1115/1.4029079.
  128. I. Palabiyik, Z. Musina, S. Witharana, Y. Ding, Dispersion stability and thermal conductivity of propylene glycol-based nanofluids, J. Nanoparticle Res. 13 (2011) 5049-5055. doi:10.1007/s11051-011-0485-x.
  129. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Rheological behaviour of nanofluids: A review, Renew. Sustain. Energy Rev. 53 (2016) 779-791. doi:10.1016/j.rser.2015.09.033.
  130. Z. Mingzheng, X. Guodong, L. Jian, C. Lei, Z. Lijun, Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions, Exp. Therm. Fluid Sci. 36 (2012) 22-29. doi:10.1016/j.expthermflusci.2011.07.014.
  131. J. Wang, J. Zhu, X. Zhang, Y. Chen, Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Exp. Therm. Fluid Sci. 44 (2013) 716-721. doi:10.1016/j.expthermflusci.2012.09.013.
  132. T.X. Phuoc, M. Massoudi, R.H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci. 50 (2011) 12-18. doi:10.1016/j.ijthermalsci.2010.09.008.
  133. M. Jarahnejad, E.B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, B. Palm, M.S. Toprak, M. Muhammed, Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids, Rheol. Acta. 54 (2015) 411-422. doi:10.1007/s00397-015-0838-y.
  134. M.A.K. Abdelhalim, M.M. Mady, M.M. Ghannam, Rheological and dielectric properties of different gold nanoparticle sizes, Lipids Health Dis. 10 (2011) 1-10. doi:10.1186/1476-511X-10-208.
  135. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf. 50 (2007) 2272-2281. doi:10.1016/j.ijheatmasstransfer.2006.10.024.
  136. C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, H. Angue Mintsa, Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47 (2008) 103-111. doi:10.1016/j.ijthermalsci.2007.01.033.
  137. S. Ferrouillat, A. Bontemps, O. Poncelet, O. Soriano, J.A. Gruss, Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids, Appl. Therm. Eng. 51 (2013) 839-851. doi:10.1016/j.applthermaleng.2012.10.020.
  138. E. V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys. 106 (2009). doi:10.1063/1.3155999.
  139. W. Xian-ju, L.I. Xin-fang, Influence of pH on Nanofluids ' Viscosity and Thermal Conductivity Influence of pH on Nanofluids ' Viscosity and Thermal Conductivity, Chin. Phys. Lett. 26 (2009) 1-5.
  140. F. Duan, D. Kwek, A. Crivoi, Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids, Nanoscale Res. Lett. 6 (2011) 248.
  141. S. Akilu, A.T. Baheta, M.A. Mior, A.A. Minea, K. V. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport, Sol. Energy Mater. Sol. Cells. 179 (2018) 118-128. doi:10.1016/j.solmat.2017.10.027.
  142. G.M. Moldoveanu, C. Ibanescu, M. Danu, A.A. Minea, Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study, J. Mol. Liq. 253 (2018) 188-196. doi:10.1016/j.molliq.2018.01.061.
  143. M. Afrand, K. Nazari Najafabadi, N. Sina, M.R. Safaei, A.S. Kherbeet, S. Wongwises, M. Dahari, Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network, Int. Commun. Heat Mass Transf. 76 (2016) 209-214. doi:10.1016/j.icheatmasstransfer.2016.05.023.
  144. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, Measurement of the dynamic viscosity of hybrid engine oil -Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network, Heat Mass Transf. Und Stoffuebertragung. 54 (2018) 151-161. doi:10.1007/s00231-017-2112-6.
  145. A. Ahmadi Nadooshan, M. Hemmat Esfe, M. Afrand, Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network, J. Therm. Anal. Calorim. 131 (2018) 2741-2748. doi:10.1007/s10973-017-6688-3.
  146. M. Hemmat Esfe, A.A. Abbasian Arani, An experimental determination and accurate prediction of dynamic viscosity of MWCNT(%40)-SiO2(%60)/5W50 nano-lubricant, J. Mol. Liq. 259 (2018) 227-237. doi:10.1016/j.molliq.2018.02.095.
  147. M.H. Esfe, M. Goodarzi, M. Reiszadeh, M. Afrand, Evaluation of MWCNTs-ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization, J. Mol. Liq. (2018) #pagerange#. doi:10.1016/j.molliq.2018.08.047.
  148. M. Hemmat Esfe, H. Rostamian, S. Esfandeh, M. Afrand, Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data, Phys. A Stat. Mech. Its Appl. 510 (2018) 625-634. doi:10.1016/j.physa.2018.06.041.
  149. M. Hemmat Esfe, M. Reiszadeh, S. Esfandeh, M. Afrand, Optimization of MWCNTs (10%) - Al2O3(90%)/5W50 nanofluid viscosity using experimental data and artificial neural network, Phys. A Stat. Mech. Its Appl. 512 (2018) 731-744. doi:10.1016/j.physa.2018.07.040.
  150. E. Sadeghinezhad, M. Mehrali, A.R. Akhiani, S. Tahan Latibari, A. Dolatshahi-Pirouz, H.S.C. Metselaar, M. Mehrali, Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field, Appl. Therm. Eng. 114 (2017) 415-427. doi:10.1016/j.applthermaleng.2016.11.199.
  151. A. Amiri, M. Shanbedi, H. Eshghi, S.Z. Heris, M. Baniadam, Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties, J. Phys. Chem. C. 116 (2012) 3369-3375. doi:10.1021/jp210484a.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence