THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A NOVEL METHOD FOR THE SPACE AND TIME FRACTIONAL BLOCH-TORREY EQUATIONS

ABSTRACT
Reproducing kernel technique was implemented to solve the fractional Bloch-Torrey equations. This efficient technique was used via some useful reproducing kernel functions, to obtain approximations to the exact solution in form of series solutions. A numerical example has been presented to prove efficiency of developed technique.
KEYWORDS
PAPER SUBMITTED: 2017-07-15
PAPER REVISED: 2017-11-21
PAPER ACCEPTED: 2017-12-15
PUBLISHED ONLINE: 2018-01-07
DOI REFERENCE: https://doi.org/10.2298/TSCI170715293A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Supplement 1, PAGES [S253 - S258]
REFERENCES
  1. Hong Sun, Zhi-zhong Sun and Guang-hua Gao. Some high order difference schemes for the space and time fractional Bloch-Torrey equations. Applied Mathematics and Computation 281: 356-380, 2016.
  2. Stanislav Zaremba. Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique. Bulletin International l'Académia des Sciences de Cracovie, 68:125-195, 1908.
  3. Minggen Cui and Yingzhen Lin. Nonlinear numerical analysis in the reproducing kernel space. Nova Science Publishers Inc., New York, 2009.
  4. Nachman Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337-404, 1950.
  5. Ali Akgül, Mustafa Inc, and Esra Karatas. Reproducing kernel functions for difference equations. Discrete Contin. Dyn. Syst. Ser. S, 8(6):1055-1064, 2015.
  6. Ali Akgül, Mustafa Inc, Adem Kilicman, and Dumitru Baleanu. A new approach for onedimensional sine-Gordon equation. Adv. Difference Equ., pages 2016:8, 20, 2016.
  7. Ali Akgül. New reproducing kernel functions. Math. Probl. Eng., pages Art. ID 158134, 10, 2015.
  8. Mustafa Inc, Ali Akgül, and Fazhan Geng. Reproducing kernel Hilbert space method for solving Bratu's problem. Bull. Malays. Math. Sci. Soc., 38(1):271-287, 2015.
  9. Azarnavid Babak and Parand Kourosh. An iterative reproducing kernel method in Hilbert space for the multi-point boundary value problems. J. Comput. Appl. Math. 328 (2018), 151-163.
  10. Sahihi Hussein, Abbasbandy Saeid and Allahviranloo, Tofigh. Reproducing kernel method for solving singularly perturbed differential-difference equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 328 (2018), 30-43.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence