THERMAL SCIENCE

International Scientific Journal

MODIFIED VARIATIONAL ITERATION METHOD FOR STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY

ABSTRACT
The modified variational iteration method (MVIM) has been used to calculate the efficiency of straight fins with temperature dependent thermal conductivity. The obtained results are compared with homotopy analysis method (HAM), homotopy perturbation method (HPM), and Adomian decomposition method (ADM). It is used w ≠ 0 auxiliary parameter to keep under control convergence region of solution series in MVIM. As a result, although MVIM and HAM give results close to each other; HPM and ADM give divergent results from analytical solution.
KEYWORDS
PAPER SUBMITTED: 2017-10-17
PAPER REVISED: 2017-11-26
PAPER ACCEPTED: 2017-12-07
PUBLISHED ONLINE: 2018-01-07
DOI REFERENCE: https://doi.org/10.2298/TSCI171017290I
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Supplement 1, PAGES [S229 - S236]
REFERENCES
  1. L. T. Yu, C. K. Chen, Optimization of circular fins with variable thermal parameters, J. Franklin Inst. 336 (1999) 77-95.
  2. M. Inc, Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Math. Comput. Simulat. 79 (2008) 189-200.
  3. C. Arslanturk, A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Int. Commun. Heat Mass. 32 (2005) 831-841.
  4. C. Arslanturk, Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity, Heat Mass Transfer 45 (2009) 519-525.
  5. S. B. Coşkun, M. T. Atay, Fin efficiency analysis of convective straight fins with temperaturedependent thermal conductivity using variational iteration method, Appl. Therm. Eng. 28 (2008).2345- 2352.
  6. G. Domairy, M. Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Commun Nonlinear Sci. 14 (2009) 489- 499.
  7. A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass 36 (2009) 757-762.
  8. P. Malekzadeh, H. Rahideh, A. R. Setoodeh, Optimization of non-symmetric convective-radiative annular fins by differential quadrature method, Energ. Convers. Manage. 48 (2007) 1671-1677.
  9. J. H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Berlin, 2005.
  10. D. D. Ganji, H. Tari, M. B. Jooybari, Application of the Homotopy Perturbation Method to Nonlinear Heat Conduction and Fractional Van der Pol Damped Nonlinear Oscillator, Comput. Math. with Appl. 54 (2007) 1018-1027.
  11. A. M. Wazwaz, The Volterra integro-differential forms of the singular Flierl-Petviashvili and the Lane-Emden equations with boundary conditions, Rom. J Phys. 58 (2013) 685-693.
  12. X. J Yang, D. Baleanu, Y. Khan, S.T. Mohyud-Din, Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Rom. J Phys. 59 (2014) 36-48.
  13. Z. G. Deng, G. C. Wu, Approximate solution of fractional differential equations with uncertainty, Rom. J Phys. 56 (2011) 868-872.
  14. H. Tari, D. D. Ganji, M. Rostamian, Approximate solutions of K (2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method, Int. J Nonlin. Sci. Num. 8 (2007) 203-210.
  15. S. Yang, A. Xiao, H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. with Appl. 60 (2010) 2871-2879.
  16. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai JiaoTong University 1992.
  17. A. Jafarian, P. Ghaderi, Alireza K. Golmankhaneh, D. Baleanu, Homotopy Analysis Method for Solving Coupled Ramani Equations, Rom. J Phys. 59 (2014) 26-35.
  18. E. H. Doha, A. H. Bhrawy, D. Baleanu, M. A. Abdelkawy, Numerical Treatment of Coupled Nonlinear Hyperbolic Klein-Gordon Equations, Rom. J Phys. 59 (2014) 247-264.
  19. C.H. Chiu, C.K. Chen, A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, Int. J. Heat Mass Transfer 45 (2002) 2067-2075.
  20. A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Phys. Lett A 364 (2007) 33-37.
  21. D. Baleanu, H. Khan, Hossien Jafari, R. A. Khan, On the exact solution of wave equations on Cantor sets, Entropy 2015, 17, 6229-6237.

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence