THERMAL SCIENCE

International Scientific Journal

THE EFFECTIVENESS OF AN INTERNET OF THINGS-AWARE SMART VENTILATED INSULATION SYSTEM

ABSTRACT
The considerable thicknesses of common insulation systems, applied to the internal or external building envelope, can be inappropriate in the Mediterranean climates for improving buildings’ energy efficiency and their internal comfort at the same time; in fact, the high thicknesses of insulating material provided by legislation standards can be cause of environments’ over-heating and formation of condensation. In this framework, the S-MUnSTa system is an innovative dynamic ventilated insulation system able to overcome condensation and overheating phenomena, also exploiting Internet of Things technologies; the main characteristic of the proposed smart insulation is that the ventilated external layer is equipped with dynamic valves of insulating material, for opening and closing the air channel, with the aim to optimize the thermal performance. In order to guarantee the expected performance of the system, as it has been patented, in this paper an innovative fixing system to install the insulating panels is presented. This new method allows a rapid and easy installation, without any specialization required and with low maintenance costs.
KEYWORDS
PAPER SUBMITTED: 2017-09-06
PAPER REVISED: 2017-12-14
PAPER ACCEPTED: 2017-12-19
PUBLISHED ONLINE: 2018-02-18
DOI REFERENCE: https://doi.org/10.2298/TSCI170906024A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Supplement 3, PAGES [S909 - S919]
REFERENCES
  1. Turanjanin V.M., Vucicevic B.S., Jovanovic M.P., Different heating systems for single family house. Energy and Economic Analysis, Thermal Science, 20 (2016) Suppl1, pp. S309-S320.
  2. Stazi, F., Vegliò, A., Di Perna, C., Munafò, P., Experimental comparison between 3 different traditional wall constructions and dynamic simulations to identify optimal thermal insulation strategies, Energy and Buildings, 60 (2013), pp. 429-441. DOI: 10.1016/j.enbuild.2013.01.032.
  3. Yılmaz, Z., Evaluation of energy efficient design strategies for different climatic zones: comparison of thermal performance of buildings in temperate-humid and hot-dry climate. Energy and Buildings, 39 (2007), pp. 306-316. DOI: 10.1016/j.enbuild.2006.08.004.
  4. Di Perna, C., Stazi, F., Ursini Casalena, A., D'Orazio, M., Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads, Energy and Buildings, 43 (2011), pp. 200-206. DOI: 10.1016/j.enbuild.2010.09.007.
  5. Stazi, F., Vegliò, A., Di Perna, C., Munafò, P., Retrofitting using a dynamic envelope to ensure thermal comfort, energy savings and low environmental impact in Mediterranean climates, Energy and Buildings, 54 (2012), pp. 350-362. DOI: 10.1016/j.enbuild.2012.07.020.
  6. Ciampi, M., Leccese, F., Tuoni, G., Ventilated facades energy performance in summer cooling of buildings. Solar Energy, 75 (2003), pp. 491-502. DOI: 10.1016/j.solener.2003.09.010.
  7. Stazi, F., Tomassoni, E., Vegliò, A., Di Perna, C., Experimental evaluation of ventilated walls with an external clay cladding, Renewable Energy, 36 (2011), pp. 3373-3385. DOI: 10.1016/j.renene.2011.05.016.
  8. Saadatian, O., Sopian, K., Lim, C. H., Asim, N., Sulaiman, M. Y., Trombe walls: A review of opportunities and challenges in research and development, Renewable and Sustainable Energy Reviews, 16 (2012) pp. 6340-6351. DOI: 10.1016/j.rser.2012.06.032.
  9. Guohui, G., Numerical evaluation of thermal comfort in rooms with dynamic insulation, Building and Environment, 35 (2000), pp. 445-453. DOI: 10.1016/S0360-1323(99)00034-7.
  10. Dimoudi, A., Androutsopoulos, A., Lykoudis, S., Experimental work on a linked, dynamic and ventilated, wall component, Energy and Buildings, 36 (2004), pp. 443-453. DOI: 10.1016/j.enbuild.2004.01.048.
  11. Sasic Kalagasidis A., The efficiency of dynamically insulated wall in the presence of air leackages, Thermal Science, 8 (2004) 1, pp. 83-94.
  12. Stazi, F., Bonfigli, C., Tommasoni, E., Vegliò, A., Di Perna, C., Munafò, P., The effect of high thermal insulation on high thermal mass:Is the dynamic behaviour of traditional envelopes in Mediterranean climates still possible?. Energy and Buildings, 88 (2015), pp. 367-383. DOI: 10.1016/j.enbuild.2014.11.056.
  13. Patrono, L., Rametta, P., Secco, A., Giampaoli, M., Terlizzi, V., Munafò, P, S-MUnSTa: A Smart Ventilated Insulation System Based on IoT Protocol Stack, International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, 2016, pp. 1-6. DOI: 10.1109/SpliTech.2016.7555945.
  14. Sulakatko, V., Lill, I., Liisma, E. Analysis of on-site construction processes for effective external thermal insulation composite system (ETICS) installation. Procedia Economics and Finance, 21 (2015) pp. 297-305. DOI: 10.1016/S2212-5671(15)00180-X.
  15. Alessandrelli, D., Mainetti, L., Patrono, L., Pellerano, G., Petracca, M., Stefanizzi, M. L, Performance Evaluation of an Energy-Efficient MAC Scheduler by Using a Test Bed Approach, Journal of Communications Software and Systems, 9 (2013), 1, pp. 84-96.
  16. Catarinucci, L., Guglielmi, S., Mainetti, L., Mighali, V., Patrono, L., Stefanizzi, M.L., Tarricone, L., An Energy-Efficient MAC Scheduler Based on a Switched-Beam Antenna for Wireless Sensor Networks, Journal of Communications Software and Systems, 9 (2013) 2, pp. 117-127.
  17. Catarinucci, L., Colella, R., Del Fiore, G., Mainetti, L., Mighali, V., Patrono, L., Stefanizzi, M. L., A Cross-Layer Approach to Minimize the Energy Consumption in Wireless Sensor Networks, International Journal of Distributed Sensor Networks, vol. 2014, Article ID 268284, (2014). DOI: 10.1155/2014/268284.
  18. Anchora, L., Capone, A., Mighali, V., Patrono, L., Simone, F., A Novel MAC Scheduler to Minimize the Energy Consumption in a Wireless Sensor Network, Ad Hoc Networks, 16 (2014) pp. 88-104, DOI: 10.1016/j.adhoc.2013.12.002.
  19. Mainetti, L., Mighali, V., Patrono, L., Rametta, P., Discovery and Mash-up of Physical Resources through a Web of Things Architecture, Journal of Communications Software and Systems, 10 (2014), 2, pp.124-134.
  20. Mainetti, L., Mighali, V., Patrono, L., A Software Architecture Enabling the Web of Things, IEEE Internet of Things Journal, 2 (2015), 6, pp. 445-454.
  21. Lillo, P., Mainetti, L., Mighali, V., Patrono, L., Rametta, P., An ECA-based Semantic Architecture for IoT Building Automation Systems, Journal of Communications Software and Systems, 12 (2016), 1, pp.24-33.
  22. Rahman, A., Ed., Dijk, E., Ed., Group Communication for the Constrained Application Protocol (CoAP), RFC 7390, DOI 10.17487/RFC7390, (2014), www.rfc-editor.org/info/rfc7390.
  23. Stazi, F., Giampaoli, M., Nisi, L., Rossi, M., Munafò, P. Mechanical performance reduction of GFRP specimens with polyester matrix exposed to continuous condensation, Composites Part B, 99 (2016), 330-339. DOI: 10.1016/j.compositesb.2016.05.062.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence