THERMAL SCIENCE

International Scientific Journal

LAMINAR FLAME CHARACTERISTCS OF ETHANOL-AIR MIXTURE: EXPERIMENTAL AND SIMULATION STUDY

ABSTRACT
Experimental test for laminar combustion of ethanol-air mixture was investigated in a constant volume combustion bomb. The laminar burning velocity and Markstein length were determined over an extensive range of equivalence ratios from 0.7-1.6 under an initial condition of 0.1 MPa pressure and 358 K temperature, with high-speed Schlieren system. The methods of linear extrapolation and non-linear extrapolation are compared and discussed. Apart from experiments, simulation was carried out in Chemkin by using the Marinov ethanol oxidation mechanism. Results indicate that non-linear extrapolation is more suitable to calculate the laminar burning velocity of ethanol-air mixture. The overall trends of laminar burning velocity vs. equivalence ratio are consistent between the experiment and simulation. The peak values of the laminar burning velocity from present experiment and simulation are 531.2 mm/s and 565.3 mm/s, both appearing at the equivalence ratio of 1.1. Moreover, the Markstein length of ethanol-air mixtures generally decreases with increasing equivalence ratio.
KEYWORDS
PAPER SUBMITTED: 2016-10-01
PAPER REVISED: 2017-03-22
PAPER ACCEPTED: 2017-04-26
PUBLISHED ONLINE: 2017-05-06
DOI REFERENCE: https://doi.org/10.2298/TSCI161001112X
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 3, PAGES [1453 - 1444]
REFERENCES
  1. Zangooee Motlagh, M. R., Modarres Razavi, M. R., A Comprehensive Numerical Study of the Ethanol Blended Fuel Effect on the Performance and Pollutant Emissions in Spark-ignition Engine, Thermal Science, 18 (2014), 1, pp. 29-38. DOI:10.2298/TSCI121005085Z
  2. Di Iorio, S., et al., A Comprehensive Analysis of the Impact of Biofuels on the Performance and Emissions from Compression and Spark-Ignition Engines, International Journal of Engine Research, 16 (2015), 5, pp. 680-690. DOI:10.1177/1468087415591924
  3. Di, Y., et al., Measurement of Laminar Burning Velocities and Markstein Lengths for Diethyl Ether−Air Mixtures at Different Initial Pressure and Temperature, Energy & Fuels, 23 (2009), 5, pp. 2490-2497. DOI:10.1021/ef900015k
  4. Marshall, S. P., et al., Laminar Burning Velocity Measurements of Liquid Fuels at Elevated Pressures and Temperatures with Combustion Residuals, Combustion and Flame, 158 (2011), 10, pp. 1920-1932. DOI:10.1016/j.combustflame.2011.02.016
  5. He, Y., et al., Investigation of Laminar Flame Speeds of Typical Syngas Using Laser Based Bunsen Method and Kinetic Simulation, Fuel, 95 (2012), pp. 206-213. DOI:10.1016/j.fuel.2011.09.056
  6. Konnov, A. A., et al., The Temperature Dependence of the Laminar Burning Velocity of Ethanol Flames, Proceedings of the Combustion Institute, 33 (2011), 1, pp. 1011-1019. DOI:10.1016/j.proci.2010.06.143
  7. van Lipzig, J. P. J., et al., Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures, Fuel, 90 (2011), 8, pp. 2773-2781. DOI:10.1016/j.fuel.2011.04.029
  8. Tran, L., et al., Experimental and Modeling Study of Premixed Laminar Flames of Ethanol and Methane, Energy & Fuels, 27 (2013), 4, pp. 2226-2245. DOI:10.1021/ef301628x
  9. Dirrenberger, P., et al., Laminar Burning Velocity of Gasolines with Addition of Ethanol, Fuel, 115 (2014), pp. 162-169. DOI:10.1016/j.fuel.2013.07.015
  10. Egolfopoulos, F. N., et al., Advances and Challenges in Laminar Flame Experiments And Implications for Combustion Chemistry, Progress in Energy and Combustion Science, 43 (2014), pp. 36-67. DOI:10.1016/j.pecs.2014.04.004
  11. Veloo, P. S., et al., A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames, Combustion and Flame, 157 (2010), 10, pp. 1989-2004. DOI:10.1016/j.combustflame.2010.04.001
  12. Liao, S. Y., et al., Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures, Applied Thermal Engineering, 27 (2007), 2-3, pp. 374-380. DOI:10.1016/j.applthermaleng.2006.07.026
  13. Bradley, D., et al., Explosion Bomb Measurements of Ethanol-Air Laminar Gaseous Flame Characteristics at Pressures up to 1.4MPa, Combustion and Flame, 156 (2009), 7, pp. 1462-1470. DOI:10.1016/j.combustflame.2009.02.007
  14. Varea, E., et al., Measurement of Laminar Burning Velocity and Markstein Length Relative to Fresh Gases Using a New Postprocessing Procedure: Application to Laminar Spherical Flames for ,Methane, Ethanol and Isooctane/Air Mixtures, Combustion and Flame, 159 (2012), 2, pp. 577-590. DOI:10.1016/j.combustflame.2011.09.002
  15. Aghsaee, M., et al., Experimental Study of the Kinetics of Ethanol Pyrolysis and Oxidation Behind Reflected Shock Waves and in Laminar Flames, Proceedings of the Combustion Institute, 35 (2015), 1, pp. 393-400. DOI:10.1016/j.proci.2014.05.063
  16. Chen, Z., On the Accuracy of Laminar Flame Speeds Measured from Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure, Combustion and Flame, 162 (2015), 6, pp. 2442-2453. DOI:10.1016/j.combustflame.2015.02.012
  17. Marinov, N. M., A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation, International Journal of Chemical Kinetics, 31 (1999), 3, pp. 183-220
  18. Li, J., Experimental and Numerical Studies of Ethanol Chemical Kinetics, Ph. D. thesis, Princeton University, USA, 2004
  19. Abianeh, O. S., Development of a New Skeletal Chemical Kinetic Mechanism for Ethanol Reference Fuel, Journal of Engineering for Gas Turbines and Power, 137 (2015), 6, pp. 1-9. DOI:10.1115/1.4029055
  20. Xu, C., et al., A Comparative Study of Laser Ignition and Spark Ignition with Gasoline-Air Mixtures, Optics & Laser Technology, 64 (2014), pp. 343-351. DOI:10.1016/j.optlastec.2014.05.009
  21. Chen, Z., et al., On the Critical Flame Radius and Minimum Ignition Energy for Spherical Flame Initiation, Proceedings of the Combustion Institute, 33 (2011), 1, pp. 1219-1226. DOI:10.1016/j.proci.2010.05.005
  22. Kelley, A. P., Law, C. K., Nonlinear Effects in the Extraction of Laminar Flame Speeds from Expanding Spherical Flames, Combustion and Flame, 156 (2009), 9, pp. 1844-1851. DOI:10.1016/j.combustflame.2009.04.004
  23. Bradley, D., et al., The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane-Air and Iso-octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb, Combustion and Flame, 115 (1998), 1-2, pp. 126-144. DOI:10.1016/S0010-2180(97)00349-0
  24. Wu, F., et al., Uncertainty in Stretch Extrapolation of Laminar Flame Speed from Expanding Spherical Flames, Proceedings of the Combustion Institute, 35 (2015), 1, pp. 663-670. DOI:10.1016/j.proci.2014.05.065
  25. Chen, Z., On the Extraction of Laminar Flame Speed and Markstein Length from Outwardly Propagating Spherical Flames, Combustion and Flame, 158 (2011), 2, pp. 291-300. DOI:10.1016/j.combustflame.2010.09.001
  26. Leplat, N., et al., Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor, Combustion and Flame, 158 (2011), 4, pp. 705-725. DOI:10.1016/j.combustflame.2010.12

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence