THERMAL SCIENCE

International Scientific Journal

CONSEQUENCES OF CONVECTION-RADIATION INTERACTION FOR MAGNETITE-WATER NANOFLUID FLOW DUE TO A MOVING PLATE

ABSTRACT
Present paper examines the boundary-layer flow of magnetic nanofluid over a radiative plate moving in a uniform parallel free stream. Water is considered as the base fluid which is being filled with magnetite-Fe3O4 nanoparticles. Energy balance equation is formulated with non-linear radiation heat flux. Mathematical analysis is carried out through the famous Tiwari and Das model. Similarity approach is utilized to construct self-similar form of the governing differential system. Numerical computations are made through standard shooting method. Ferrofluid velocity is predicted to enhance upon increasing the nanoparticle volume fraction which contradicts with the available literature for non-magnetic nanofluids. It is found that Fe3O4-water ferrofluid has superior heat transfer coefficient than pure water. Results reveal that consideration of magnetic nanoparticles in water leads to better absorption of incident solar radiations. The well-known Blasius and Sakiadis flows are also explicitly analyzed from the present model.
KEYWORDS
PAPER SUBMITTED: 2015-11-28
PAPER REVISED: 2016-07-26
PAPER ACCEPTED: 2016-07-27
PUBLISHED ONLINE: 2016-09-05
DOI REFERENCE: https://doi.org/10.2298/TSCI151128212M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 1, PAGES [443 - 451]
REFERENCES
  1. X. Q. Wang and A. S. Mujumdar, A review on nanofluids-Part II, Brazilian J. Chem. Eng. 25 (2008) 631-648.
  2. R. Saidur, K. Y. Leong and H. A. Mohammed, A review on applications and challenges of nanofluids, Renew. Sust. Ener. Rev. 15 (2011) 1646-1668.
  3. R. Saidur, S. N. Kazi, M. S. Hossain, M. M. Rahman and H. A. Mohammed, A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems, Renew. Sust. Ener. Rev. 15 (2011) 310-323.
  4. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop and S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf. 57 (2013) 582-594.
  5. A. Kasaeian, A. T. Eshghi and M. Sameti, A review on the applications of nanofluids in solar energy systems, Renew. Sust. Ener. Rev. 43 (2015) 584-598.
  6. D. A. Nield and A. V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid: A revised model, Int. J. Heat Mass Transf. 68 (2014) 211-214.
  7. A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, Int. J. Therm. Sci. 77 (2014) 126-129.
  8. M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Comp. Fluids 94 (2014) 139-146.
  9. M. M. Rashidi, S. Abelman and N. F. Mehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf. 62 (2013) 515-525.
  10. M. Sheikholeslami, F. B. Sheykholeslami, S. Khoshhal, H. Mole-Abasia, D. D. Ganji and H. B. Rokni, Effect of magnetic field on Cu-water nanofluid heat transfer using GMDH-type neural network, Neural Comput. Appl. 25 (2014) 171-178.
  11. A. Malvandi and D. D. Ganji, Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel, J. Magnet. Magn. Mater. 362 (2014) 172-179.
  12. A. Mushtaq, M. Mustafa, T. Hayat and A. Alsaedi, Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study, J. Taiwan Inst. Chem. Eng. 45 (2014) 1176-1183.
  13. M. M. Rashidi, N. Freidoonimehr, A. Hosseini, O. A. Bég and T. K. Hung, Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration, Meccan. 49 (2014) 469-482.
  14. D. A. Nield and A. V. Kuznetsov, Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 70 (2014) 430-433.
  15. M. Mustafa and J. A. Khan, Model for flow of Cassonnanofluid past a non-linearly stretching sheet considering magnetic field effects, AIP Adv. doi: 10. 1063/1.4927449.
  16. J. A. Khan, M. Mustafa, T. Hayat and A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. 86 (2015) 158-164.
  17. J. A. Khan, M. Mustafa, T. Hayat, M. Sheikholeslami and A. Alsaedi, Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: An application to solar energy, PLoS ONE 10 (2015) doi:10.1371/journal.pone.0116603.
  18. M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq. 211 (2015) 119-125.
  19. I. Sharifi, H. Shokrollahi and S. Amiri, Ferrite based magnetic nanofluids used in hyperthermia applications, J. Magnet. Magn. Mater. 324 (2011) 903-915.
  20. H. Aminfar, M. Mohammadpourfard and F. Mohseni, Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields, J. Magn. Magn. Mater. 324 (2012) 830-842.
  21. F. Selimefendigil and H. F. Oztop, Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step, Int. J. Heat Mass Transf. 71 (2014) 142-148.
  22. M. Sheikholeslami, M. Gorji-Bandpy, R. Ellahi and A. Zeeshan, Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces, J. Magn. Magn. Mater. 369 (2014) 69-80
  23. A. Malvandi and D. D. Ganji, Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel, J. Magn. Magn. Mater. 362 (2014) 172-179.
  24. X. Zhang and H. Huang, Effect of magnetic obstacle on fluid flow and heat transfer in a rectangular duct, Int. Commun. Heat Mass Transf. 51 (2014) 31-38.
  25. A. Rapits and C. Perdikis, Viscoelastic flow by the presence of radiation, ZAMP 78 (1998) 277-279.
  26. M. A. Seddeek, Effects of radiation and variable viscosity on MHD free convection flow past a semi infinite flat plate with an aligned magnetic field in the case of unsteady flow, Int. J. Heat Mass Transf. 45 (2002) 931-935.
  27. A. Pantokratoras and T. Fang, Blasius flow with non-linear Rosseland thermal radiation, Meccan. 49 (2014) 1539-1545.
  28. A. Mushtaq, M. Mustafa, T. Hayat and A. Alsaedi, On the numerical solution of the nonlinear radiation heat transfer in a three-dimensional flow, Z. Naturforsch. 69a (2014) 705-713.
  29. A. Pantokratoras, Natural convection along a vertical isothermal plate with linear and non-linear Rosseland thermal radiation, Int. J. Therm. Sci. 84 (2014) 51-57.
  30. M. Mustafa, A. Mushtaq, T. Hayat and A. Alsaedi, Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet, J. Taiwan Inst. Chem. Eng. 47 (2015) 43-49.
  31. M. Mustafa, A. Mushtaq, T. Hayat and A. Alsaedi, Model to study the non-linear radiation heat transfer in the stagnation-point flow of power-law fluid, Int. J. Num. Meth. Heat & Fluid Flow 25 (2015) 1107-1119.
  32. J. C. Maxwell, A treatise on electricity and magnetism, 2nd Ed. Cambridge: Oxford University Press; 1904. pp. 435-41.

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence