THERMAL SCIENCE

International Scientific Journal

AN EXPERIMENTAL INVESTIGATION AND STATISTICAL ANALYSIS OF TURBULENT SWIRL FLOW IN A STRAIGHT PIPE

ABSTRACT
This paper presents results of our own velocity field measurements in a straight pipe swirl flow. These studies were conducted using an originally designed hot wire probe. Due to the specially tailored shape of the probe, it was possible to get four measurement points in the viscous sublayer. The time-averaged velocity field and the statistical moments of the second and third order are calculated based on the measured velocity components. Mathematical and physical interpretations of statistical characteristics and structures of turbulent swirl flow in the time domain are presented. On the basis of these results, deeper insight into turbulent transport processes can be obtained, as well as useful conclusions necessary for turbulent swirl flows modeling. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046]
KEYWORDS
PAPER SUBMITTED: 2016-02-01
PAPER REVISED: 2016-06-27
PAPER ACCEPTED: 2016-07-20
PUBLISHED ONLINE: 2016-08-07
DOI REFERENCE: https://doi.org/10.2298/TSCI160201191L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Supplement 3, PAGES [S691 - S704]
REFERENCES
  1. Meldau E. Drallstrmung im Drehhohlraum, Dissertation, TH Hannover, 1935.
  2. Schibeler W. Luftstrmungen mit Drall im Kreisrohr hinter radialem Leitapparat, Mitteilungen aus dem Max-Planck-Institut fr Strmungsforschung, Heft 12, Gttingen, 1955.
  3. chl un es F. essungen in uftstrmungen mit onstanten rall im geraden reisrohr, oith Forsch. u. Konstr. 5, p. 2.1-2.11, 1959.
  4. Laux H. Beitrag zur experimentallen Untersuchung von Drallestrmungen im kreiszylindrischen Rohr, Dr.-Ing.-Diss., Techn. Univ., Berlin. 1961.
  5. Gupta A. K. et al., Swirl Flows, Abacus Press, England, 1984.
  6. Baker D. W., Sayre C. L., Decay of swirling flow of incompressible fluids in long pipes, Flow: Its Meas. And Control in Sci. and Ind., Proc. Symp., vl.pt. 1, (1971), Pittsburgh, pp. 301-312.
  7. Lea J.F., Price D. C., Mean velocity measurements in swirling flow in a pipe, Flow: Its Meas. And Control in Sci. and Ind., Proc. Symp., vl.pt. 1, (1971), Pittsburgh, pp. 313-317.
  8. Senoo Y., Nagata T., Swirl Flow in Long Pipes with Different Roughness, Bull. JSME 15 (1972), 90, pp. 1514-1521.
  9. awatz i ., rallstr omung in langen reisrunden Rohren, trmungsmechani und trmungs-maschinen, Heft12. (1972)
  10. Ito S., et al., Decay process of swirling flow in a circular pipe, Int. Chem. Eng. 19 (1979), 4, pp. 600-605.
  11. Nejad A. S., Ahmed S. A., Flow field characteristics of an axisymmetric sudden-expansion pipe flow with different initial swirl distribution, Int. Heat and Fluid Flow 13 (1992), 4, pp. 314-321
  12. Khezzar L. Velocity measurements in the near field of a radial swirler, Experimental Thermal and Fluid Science 16, (1998), pp. 230-236.
  13. Yajnik K.S., Subbiah M. V., Experiments on Swirling Turbulent Flows, Part 1, Similarity in Swirling Flows, J. Fluid Mech. 60, (1973), Part 4, pp. 665-687.
  14. Escudier M. P., Keller J., Recirculation in swirling flow: a manifestation of vortex break down, AIAA Jour-nal 23, (1985), 1, pp. 111-116.
  15. ollatz ., ortler H., Rohrstrmung mit schwachem rall, ZAMP 5. (1954)
  16. Einstein H. S., Li H., Steady Vortex Flow in a Real Fluid, Proc. HT & Fluid Mech., Institute Palo Alto, California 1951
  17. Kreith F., Sonju O. K., The Decay of a turbulent swirl in a pipe, J. Fluid Mech. 22 (1965), part 2, pp. 257-271.
  18. Rochino A., Lavan Z., Analytical Investigations of Incompressible Turbulent Swirling flow in Stationary Ducts, J. Appl. Mech. 36, Trans. ASME 91, (1969), Series E, pp. 151-158.
  19. Akiyma T., Ikeda M., Fundamental study of the fluid mechanics of swirlig pipe flow with air suction, Ind. Eng. Chem. Process Des. Dev. 25, (1986), pp. 907- 913.
  20. Yoshizawa A. et al., Variational approach to turbulent swirling pipe flow with the aid of helicity, Phys. Fluids 13, (2001), 8, pp. 2309-2319.
  21. Strscheletzky M., Trennungsschichten, Fortschr.-Ber., VDI-Z., Reihe 7, (1972), Nr. 32.
  22. Reader-Harris M. J., The decay of swirl in the pipe, Int. Heat and Fluid Flow 15, (1994), 3, pp. 212-217.
  23. Scott C. J., Rask D. R., Turbulent Viscosities for Swirling Flow in a Stationary Annulus, J. Fluids Eng., Trans. ASME, (1973), pp. 557-566.
  24. Murakami M. et al., An experimental Study of Swirling Flow in Pipes, Bull. JSME 19, (1976), 128, pp. 118-126.
  25. Scott C. J., Bartelt K. W., Decaying annular swirl flow with inlet solid body rotation, J. Fluid Eng. (1976), pp. 33-39
  26. Beniše . H., Investigation of the swirl flow in pipes, PhD Thesis, Faculty of Mechanical Engineering, Belgrade, 1979, (in Serbian).
  27. Algifri A. H., Bhardway R. K., Prediction of the decay process in turbulent swirl flow, Proc. Inst. Mech. Engrs 201, (1987), C4, pp. 279 283.
  28. Weske J. R., Sturov G. E., Experimental investigation of turbulent swirling flow in a cylindrical tube, Proc. Siberation Siv. Acad. Sci. USSR, 13, (1972), 3, pp. 3-7
  29. Acrivellis M., Untersuchungen an turbulenten Drallstrmungen hinter einem radialen Leitapparat, Dr.-Ing.-Diss., Univ (TH), Karlsruhe, 1973.
  30. Saito S. et al., Decay of Swirl in a Straight Pipe Flow, Rep. Inst. High Speed Mech. 28, (1973), 260, pp. 43-76.
  31. Čantra . ., Experimental Investigation of the tatistical Properties of wirling Flows in Pipes and if-fusers, Ph.D. Thesis, Karlsruhe, 1981, (in German).
  32. Kind. R. J. et al., The law of the wall for swirling flow in annular ducts, ASME J. Fluids Eng. 111, (1989), pp. 160-164.
  33. Kitoh O., Experimental study of turbulent swirling flow in a straight pipe, J. Fluid Mech. 225, (1991), pp. 445 479.
  34. Anwer M., So R. M. C., Swirling turbulent flow through a curved pipe, Experiments in fluids 14, (1993) pp. 85-96.
  35. Lečić . R., Theoretical and experimental investigation of turbulent swirling flows, Ph Thesis, Faculty of Mechanical Engineering, Belgrade, 2003, (in Serbian).
  36. ečić . R. et al., Original Measuring and Calibration Equipment for Investigation of Turbulent Swirling Flow in Circular Pipe, EXPERIMENTAL TECHNIQUES 38, (2014), 3, pp. 54-62, DOI: 10.1111/j.1747-1567.2012.00812.x
  37. ečić . et al., V-type Hot Wire Probe Calibration, FME Transactions, University of Belgrade, Faculty of Mechanical Engineering, Belgrade, New Series 35, (2007), 2, pp. 55-62., UDC:621,YU ISSN 1451-2092.
  38. Proakis J., Manolakis D., Digital Signal Processing: Principles, Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
  39. Beniše . H. et al., Aplication of new classic probes in swirl fluid flow measurements, EXPERIMENTAL TECHNIQUES 34 (2010), 3, pp. 74-81.
  40. u oslavčević P., Petrović . Multiple hot-wire probes. Measurement of velocity and vorticity vector fields, Montenegrian Academy of Sciences and Arts, Podgorica, 2000.
  41. Beniše . et al., Theoretical and experimental investigation of the turbulent swirling flow characteristics in circular pipes, ZAMM 68, (1988), 5, T 280-282.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence