International Scientific Journal


Turbulent heat transfer between a confined jet flowing in a hot rectangular cavity is studied numerically by finite volume method using the k-w SST one point closure turbulence model. The location of the jet inside the cavity is chosen so that the flow is in the non-oscillation regime. The flow structure is described for different jet-to-bottom-wall distances. A parametrical study was conducted to identify the influence of the jet exit location and the Reynolds number on the heat transfer coefficient. The parameters of this study are: the jet exit Reynolds number (Re, 1560< Re <33333), the temperature difference between the cavity heated wall and the jet exit (DT=60°C) and the jet location inside the cavity (Lf, 2≤ Lf≤ 10 and Lh 2.5 Keywords: jet-cavity interaction, heat transfer, plane jet, turbulence modeling
PAPER REVISED: 2014-04-29
PAPER ACCEPTED: 2014-05-03
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2016, VOLUME 20, ISSUE Issue 5, PAGES [1485 - 1498]
  1. Martin, H., Heat and mass transfer between impinging gas jets and solid surfaces, Advances in Heat Transfer, 13, Academic Press, (1977) New York, pp. 1-60.
  2. Jambunathan, K., Lai, E., Moss, M.A. Button, B.L. A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow (1992), Vol13, pp106-115.
  3. Gardon.R and Akfirat, J.C., Heat transfer characteristics of impinging two dimensional air jets, Journal Heat Transfer, Transactions of the ASME(1966), pp 101 -108.
  4. Kumada, M., Mabuchi, I., Kawashima, Y, Mass transfer on a cylinder in the potential core region of a two-dimensional jet, Heat Transfer -Jpn., (1973) Res. 2 (3), pp 53-66.
  5. Kumada, M., Mabuchi, I., Kawashima, Y., Hirata, M, Mass transfer on a cylinder in developed region of a two dimensional jet, Trans. JSME (30) (330) (1974), pp 471-478.
  6. Gau, C., Chung, C.M. ,Surface curvature effect on slot-air jet impingement cooling flow and heat transfer process, J. Heat Transfer 113(1991) , pp 858-864.
  7. Choi,M., Yoo, H.S.,Yang, G.,Lee, J.S.,Sohn,D.K. ,Measurements of impinging jet flow and heat transfer on a semi-circular concave surface, Int. J. Heat Mass Transfer Vol. 43(2000) , pp 1811-1822.
  8. Ahmadi,H., Rajabi, Z.M., Mujumdar A., Mohammadpour,J., Numerical modeling of a turbulent semi-confined slot jet impinging on a concave surface, thermal science (2013)
  9. Chan, T.L., Leung, C.W., Jambunathan, K., Ashforth-Frost,Y. S., Zhou, Liu,M.H.,Heat transfer characteristics of a slot jet impinging on a semi-circular convex surface, Int.J. Heat Mass Transfer Vol. 45(2002), pp 993-1006.
  10. Zuckerman, N. and Lior, N, Jet impingement heat transfer: Physics, correlations, and numerical modeling, Advances in Heat Transfer, Vol. 39(2006), pp 565-631.
  11. Li,P. W. and. Tao, W. Q, Numerical and experimental investigations on heat/mass transfer of slot-jet impingement in a rectangular cavity, Int. J. Heat and Fluid Flow Vol. 14 (3) (1993),pp 246-253.
  12. Lin, Z. H., Chou Y. J. and Hung Y. H, Heat transfer behaviors of a confined slot jet impingement, Int. J. Heat Mass Transfer. Vol. 40(5) (1997), pp. 1095-1107.
  13. Benmouhoub, D, Mataoui, A., Computation of heat transfer of a plane turbulent jet impinging a moving plate, thermal science (2012), doi:10.2298/TSCI111027101B
  14. Halouane, Y., Mataoui, A. Iachachene, F., Turbulent heat transfer for impinging jet flowing inside a cylindrical hot cavity, thermal science (2013)
  15. Mataoui, A., Schiestel R. and Salem A., Flow regimes of interaction of a turbulent plane jet into a rectangular cavity: Experimental approach and numerical modeling, Journal of Flow, Turbulence and Combustion, Vol. 67 (4) (2001), pp. 267-304.
  16. Mataoui, A. and Schiestel, R, Unsteady phenomena of an oscillating turbulent jet flow inside a cavity: Effect of aspect ratio"Journal of Fluids and Structures Vol. (2009), 25pp 60-79.
  17. C. Bourque et B.G. Newman, « Reattachment of a two-dimensional, incompressible jet to an adjacent Flat Plate », The Aeronautical Quarterly, vol XI, aout 1960; pp. 201
  18. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, Vol. 32(8) (1994), pp.1598-1605.
  19. Patankar S.V.,''Numerical heat transfer and fluid flow ', Series in computational Methods in Mechanics and Thermal Sciences, Hemisphere Publ.Corp., 1980.
  20. Wilcox D.C., Turbulence Modeling for CFD, DCW Industries, Inc., 5354 Palm Drive, La Canada, California (1998) 91011, 2nded.
  21. Liu, Q., Sleiti, A.K. , Kapat, J.S. , Application of pressure and temperature sensitive paints for study of heat transfer to a circular impinging air jet, Int. J. Thermal Sci. 47 (2008),pp 749-757.
  22. Lytle, D., Webb, B.W, Air jet impingement heat transfer at low nozzle-plate spacing, Int. J. Heat Mass Transfer Vol. 37(1994), pp 1687-1697.
  23. Goldstein, R.J., Behbahani, A.I., Kieger, Heppelmann, K., Stream wise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet, Int. J. Heat Mass Transfer Vol.(1986), 29, pp 1227-1235.
  24. Merci B. and Dick E. , Heat transfer predictions with a cubic k- model for axisymmetric turbulent jets impinging onto a flat plate, International Journal of Heat and Mass Transfer Vol. 46 (2003),pp. 469- 480.

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence