THERMAL SCIENCE

International Scientific Journal

EXPERIMENTAL INVESTIGATION OF SUBCOOLED FLOW BOILING OF WATER/TIO2 NANOFLUID IN A HORIZONTAL TUBE

ABSTRACT
Subcooled flow boiling heat transfer of water/TiO2 nanofluid in a horizontal tube is experimentally investigated. To validate the experimental apparatus as well as the experimental procedure, data for distilled water were compared with the available results on the literature in both single phase and subcooled flow boiling regime. Experimental investigations were carried out at three nanoparticles volumetric concentrations of 0.01%, 0.1%, and 5%. It was found that the nanofluid heat transfer coefficient in single-phase flow regime augments with the nanoparticle concentration. However, in the case of subcooled flow boiling regime the heat transfer coefficient decreases with the nanoparticle volume fractions.
KEYWORDS
PAPER SUBMITTED: 2013-09-29
PAPER REVISED: 2014-03-09
PAPER ACCEPTED: 2014-10-25
PUBLISHED ONLINE: 2014-11-08
DOI REFERENCE: https://doi.org/10.2298/TSCI130929122R
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2016, VOLUME 20, ISSUE Issue 1, PAGES [99 - 108]
REFERENCES
  1. Maxwell, J.C. , Electricity and Magnetism, Clarendon Press, Oxford, UK, (1873)
  2. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. Anomalous thermal Conductivity enhancement in nano-tube suspensions. Applied Physics Letters, 79(2001),pp. 2252-2254
  3. Masuda, H, Ebata, A., Teramae, K., Hishiunma, N., conductivity and viscosity of liquid by dispersed ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultra-fine particles), Alteration of thermal, Netsu Bussei (Japan) 4 (1993), pp. 227-233.
  4. Lee, S., Choi, S. U. S., Li, S., Eastman, G., Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121(1999), pp. 280-2899.
  5. Xuan, Y., Li, Q., Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, (2003) pp. 125-151.
  6. Xuan, Y., Roetzel, W., Conceptions for Heat Transfer Correlation of Nanofluids, International Journal of Heat and Mass Transfer, 43(2000), pp. 3701-3707.
  7. Wen, D., Ding, Y., Experimental investigation into the pool boiling heat transfer of aqueous based -alumina nanofluids.,J Nanopart,7( 2005) ,pp. 265-274.
  8. Mirmasoumi, S., Behzadmehr, A., Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, International Journal of Heat and Fluid Flow,.29(2007), pp 557-566.
  9. Rohsenow, W. M., Griffith, P., Correlation of maximum heat flux data for boiling of saturated liquids, Chemical Engineering Progress Symposium, 52(1956), pp. 47-49
  10. Das, S. K., Putra, N., Roetzel, W., Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, 46(2003), pp. 851-862.
  11. Liu, Z. H., Yang, X. F., Xiong, J. G., Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures. Int J Therm Sci; 49(2010) 7, pp.1156-1164.
  12. Kwark, S. M., Kumar, R., Moreno, G., et al. Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transfer; 53(2010), pp. 972-981.
  13. Prakash, N. G., Anoop, K. B., Das, S. K., Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticles suspensions over vertical tubes, J Appl Phys, 102(102), pp.074317-1-7.
  14. Wen, D. S., Ding, Y. L., Williams, R. A., Pool boiling heat transfer of aqueous TiO2- based nanofluids, Journal of Enhanced Heat Transfer, 13(2006), pp. 231-244.
  15. Suriyawong, A., Wongwises, S., Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations, Experimental Thermal and Fluid Science, 34(2010), pp. 992-999.
  16. Park, K. J., Jung, D. S., Enhancement of nucleate boiling heat transfer using carbon nanotubes, International Journal of Heat and Mass Transfer, 50(2007), pp. 4499-4502.
  17. . Abedini, E., Behzadmehr, A., Sarvari, S. M. H., Mansouri, S. H., Numerical investigation of subcooled flow boiling of a nanofluid, International Journal of Thermal Sciences, 64(2013), pp. 232-239.
  18. . Vassallo, P., Kumar, R., D'Amico, S., Pool boiling heat transfer experiments in silica-water nano-fluids, International Journal of Heat and Mass Transfer, 47(2004), pp. 407-411.
  19. Coursey, J. S., Kim, J., Nanofluid boiling: The effect of surface wettability, International Journal of Heat and Fluid Flow,29(2008), pp. 1577-1585.
  20. Moreno, G., Oldenburg, S. J., You, S. M., Kim, J. H., Pool boiling heat transfer of alumina-water, zinc oxide-water and alumina-water plus ethylene glycol nanofluids, in Ht2005: Proceedings of the Asme Summer Heat Transfer Conference, 2(2005), pp. 625-632.
  21. Bang, I. C., Chang, S. H., Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, 48(2005), pp. 2407-2419.
  22. Kathiravan. R., Kumar., R., Gupta, A., Chandra, R., Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater , Journal of Heat AND MASS Transfer. 53(2010), pp.1673-1681.
  23. Sujith Kumar, C.S., Suresh, S., Yang, L., Yang, Q., Aravind, S., Flow boiling heat transfer enhancement using carbon nanotube coatings, Applied Thermal Engineering, 65(2014), pp. 166-175.
  24. Kim, S. J., McKrell, T., Buongiorno, J., et al. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des ; 240(2010), pp.1186-1194.
  25. . Kim, S.J., McKrell, T., Buongiorno, J., Hu, L.W., 2009. Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water and diamond-water nanofluids. J. Heat Transfer Vol.131, 043204.
  26. . Hormozi, F., Sarafraz, M. M., Scale formation and subcooled flow boiling heat transfer of CuO-water nanofluid inside the vertical annulus, Experimental Thermal and Fluid Science, 52(2014), PP. 205-214.
  27. . ANSI/ASME PTC 19.1, ASME Performance Test Codes: Supplement on Instruments and Apparatus, Part 1: Measurement Uncertainty, 1985.
  28. Gnielinski, V., New equations for heat and mass transfer in turbulent pipe and channel flow, Int Chem Eng,16(1976), pp. 359-368.
  29. Chen, J. C., Correlation for boiling heat transfer to saturated fluids in convective flow, Ind Eng Chem Process Des Dev, 5(1966)3, pp. 322-329.
  30. . Batchelor, G.K., The effect of Brownian motion on the bulk stress in a suspension of spherical particles,. J. Fluid Mech. 83(1977.), pp. 97-117.
  31. . Maiga, S. E. B., Palma, S. J., Nguyen, C. T a,Roy, G., Galanis, N., Heat transfer enhancement by using nanofluids in forced convection flows, International Journal of Heat and Fluid Flow, 26 (2005),pp. 530-546
  32. Kim, S.J., Bang, I.C., Buongiorno, J., Hu, L.W.,Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transfer , 50(2007), pp. 4105-4116.
  33. Kim, S.J., Bang, I.C., Buongiorno, J., Hu, L.W., Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett. 89(2007),pp. 153107.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence