International Scientific Journal

External Links


This article investigates several fractal heat transfer problems from the local fractional calculus viewpoint. At low and high excess temperatures, the linear and nonlinear heat-transfer equations are presented. The non-homogeneous linear and nonlinear oscillator equations in fractal heat transfer are discussed. The results are adopted to present the behaviors of the heat transfer in fractal media.
PAPER REVISED: 2015-08-28
PAPER ACCEPTED: 2015-08-28
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 5, PAGES [1867 - 1871]
  1. Kilbas, A. A.., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier, New York, 2006
  2. Tarasov, V. E., Fractal electrodynamics via non-integer dimensional space approach, Phys. Lett. A, 379(2015), pp. 2055-2061
  3. Hristov J., An approximate analytical (integral-balance) solution to a nonlinear heat diffusion equation, Therm. Sci., 19 (2015), pp. 723-733
  4. West, B. J., et al., Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics, New J. Phys., 17(2015), 4, 045009
  5. Machado, J. A. T., Mata, M. E., Pseudo Phase plane and fractional calculus modeling of western global economic downturn, Commun. Nonlinear Sci., 22(2015), 1, pp. 396-406
  6. Bhrawy, A. H., et al., A new numerical technique for solving fractional sub-diffusion and reaction sub-diffusion equations with a non-linear source term, Therm. Sci., 19(2015), S1, pp. 25-34
  7. Chen, J., et al., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338(2008), pp. 1364-1377
  8. Sandev, T., et al., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A, 44(2011), 25, 255203
  9. Yang. X.-J., Baleanu. D, Srivastava. H. M., Local Fractional Integral Transforms and Their Applications, Elsevier, London, 2015
  10. Cattani, C., Srivastava, H. M., Yang, X.-J., Fractional Dynamics, Emerging Science Publishers, Berlin, 2015
  11. Yang, X.-J., Advanced local fractional calculus and its applications, World Science, New York, 2012
  12. Yang, X.-J., et al., Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow, Nonlinear Dynam., 2015, pp. 1-5.
  13. Baleanu, D., et al., Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets, Progr. Fract. Differ. Appl., 1(2015), pp. 1-11
  14. Yang, X.-J., Srivastava, H. M., An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci., 29(2015), pp. 499-504
  15. Yang, X.-J., et al., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 47(2015), pp. 54-60
  16. Fan, Z.-P., et al., Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives, Therm. Sci., 19(2015), S1, pp. 137-141
  17. Yang, X.-J., et al., Observing diffusion problems defined on cantor sets in different coordinate systems, Therm. Sci., 19(2015), S1, pp. 151-156
  18. Jafari, H., et al., A decomposition method for solving diffusion equations via local fractional time derivative, Therm. Sci., 19(2015), S1, pp. 123-129
  19. Yang, X.-J., et al., Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Report. Phys., 67(2015), 3, In press.
  20. Yan, S.-P., et al., Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators, Adv. Math. Phys., 2014 (2014), 161580, pp. 1-7
  21. J. Ahmad, S. T. Mohyud-Din, Solving wave and diffusion equations on Cantor sets, Proc. Pakistan Acad. Sci., 52 (2015), 1, pp. 71-77
  22. Jassim, H. K., et al., Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., 2015 (2015), 309870, pp. 1-9
  23. Chen, Z.-Y., et al., Signal processing for nondifferentiable data defined on Cantor sets: a local fractional Fourier series approach, Adv. Math. Phys., 2014(2014), 561434, pp. 1-7
  24. He, J.-H. A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53(2014), pp. 3698-3718
  25. Liu, H.-Y., et al., Fractional calculus for nanoscale flow and heat transfer, Int. J. Numer. Method H., 24(2014), pp. 1227-1250

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence