THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

MARGINAL SHARE OF RENEWABLE ENERGY SOURCES OF VARIABLE ELECTRICITY GENERATION: A CONTRIBUTION TO THE CONCEPT DEFINITION

ABSTRACT
Technology development is a keystone within the efforts toward enabling longer duration of the world fossil energy resources. The past development and the technologies applied, cause huge emissions of СО2 that must be significantly reduced. Increased usage of renewable energy sources for electricity generation (RES-e) contributes essentially to the reduction of CO2, but on the other hand, under current conditions of feed-in priority reduces also the market for the electricity from fossil fuelled power plants (FFPP). The other possibility for reduction of CO2 emissions is to apply carbon capture and storage technologies as a part of overall FFPP technologies. A hypothesis presented in this paper is that there is a marginal share of RES variable electricity in overall annual electricity supply after which further increase of RES-e participation produces higher average electricity generated cost, than in the case of CO2 emission reduction by applying CCS technologies. The presented work confirms this hypothesis. Value of the marginal share depends to the price of RES-e feed-in. With the price span from 13.5 to 7.5€c/kWh, the marginal share is under 50%.
KEYWORDS
PAPER SUBMITTED: 2014-04-22
PAPER REVISED: 2014-06-11
PAPER ACCEPTED: 2014-07-01
PUBLISHED ONLINE: 2014-08-10
DOI REFERENCE: https://doi.org/10.2298/TSCI140422087G
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 2, PAGES [383 - 396]
REFERENCES
  1. Lior N., Sustainable energy development: The present (2011) situation and possible paths to the future, Energy, 43 (2012), pp. 174-91
  2. Bošnjaković B., Geopolitics of climate change: a review, Thermal Science, 16 (2012), 3. pp. 629-654
  3. Pusnik M., Sucic B., Urbancic A. and Merse S., Rolle of national energy system modelling in the process of the policy development, Thermal Science, 16 (2012), 3. pp. 703-715.
  4. Wissel, S., Ruth-Nagel, S., Blesl, M., Fahl, U., Voß, A.: Electricity Production Cost in Comparison, (in German language) Stromerzeugungskosten im Vergleich. Universität Stuttgart, Institut für Energiewirtschaft und Rationale Energieanwendung, Bericht Nr. 4. 2008. www.ier.uni-stuttgart.de/.../Arbeitsbericht_04.pdf (05.06.2013).
  5. Fouquet, D., Nysten, J., The Role of Renewable Energy in the Changing Energy Landscape in Europe - Some Reflections, VGB PowerTech, (2012), 1/2, pp. 38-42
  6. Götz W., Requirements for a future energy production, (in German language), Anforderungen an eine künftige Energieerzeugung, VGB PowerTech, (2013), 1/2, pp. 36-39
  7. Kang C.A., Brandt A.R., Durlofsky L.J., Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind, Energy, 36 (2011), pp. 6806-20
  8. Blinc R., Najdovski D., Bekteshi S., Kabashi S., Šlaus I. and Zidanšek A., How to achieve a sustainable future for Europe, Thermal Science, 12 (2008), 4, pp. 19-25
  9. Benesch, W., Passini, S., New fossil-fired power stations in Europe - Status and Perspectives, VGB PowerTech, (2011), 4, pp. 28-31
  10. Berge, H., The electricity sector at a crossroads, VGB PowerTech, (2012), 1/2, pp. 32-34
  11. Waleczek, R., Is it still possible to finance energy transition? (in German language), Ist die Energiewende noch finanzierbar? VGB PowerTech, (2013), 1/2, pp. 32-35
  12. Nicolosi, M., Wind Power Integration, negative Prices and Power System Flexibility - An Empirical Analysis of extreme Events in Germany, Energy Policy, 38 (2010), 11, pp. 7257-68
  13. Berge, H., Energy challenges: A European answer, VGB PowerTech, (2013), 1/2, pp. 29-31
  14. Schaber, K., Steinke, F., Hamacher, T., Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where? Energy Policy, 43 (2012), pp. 123-35
  15. Frohne A. and Hündlings, C., With Modern Power Plants Investing in the Furure (in German language), Mit modernen Kraftwerken in die Zukunft investiren. VGB PowerTech, (2011), 12, pp. 58-63
  16. Bareiß, J., Helmrich, A., Bantle, M., Materials Specification VGB-R 109 and Processing Standards - First Experiences of a New Power Plant for Quality Control Purposes, VGB PowerTech, (2010), 7, pp. 51-55
  17. Fürsch, M., Nagl, S., Lindenberger, D., Optimization of power plant investments under uncertain renewable energy development paths - A multistage stochastic programming approach, Energy Systems, (2013), DOI 10.1007/s12667-013-0094-0
  18. Vogeler, K., Future Outlook for the High-Temperature Gas Turbine in the Thermal Power Plants Building (in German language), Zukunftsprespektiven für die Hochtemperatur-Gasturbine im Kraftwerksbau. VGB PowerTech, (2011), 10, pp. 29-33
  19. Stamatelopoulos, G-N., Pickard, A., Schneider, T., Economical Operation of Fossil Fueled Power Plants for Guarantee the Safe Supply, (in German language), Wirtschaftlicher Betrieb von fossil befeurten Kraftwerken zur Gewärleistung der Versorgungssicherheit. VGB PowerTech, (2013), 1/2, pp. 64-68
  20. Mondal M. K., Balsora H. K., Varshney P., Progress and trends in CO2 capture/separation technologies: A review, Energy, 46 (2012), pp. 431-41
  21. Kather, A., Future Climate Frendly Electricity supply with Fossil Fired Power plants (in German language), Zukünftige klimafreundliche Stromversorgung mit fossil befeurten Kraftwerken. VGB PowerTech, (2011), 9, pp. 44-53
  22. Then, O., Wüllenweber, H-J., Keinhörster, B., New Coal Power Plants in RWE Power AG, (in German language), Neue Kohlekraftwerke bei RWE Power AG. VGB PowerTech, (2007), 11, pp. 69-74
  23. Reimuth, O., Kremer, H., Vortmeyer, N., Greener Power Generation Technologies - Solutions for Carbon Capture, VGB PowerTech, (2011), 12, pp. 81-6
  24. Paelinck, F., Altmann, H., Overview on CCS Technologies and Results of Vattenfall's Oxyfuel Pilot Plant, VGB PowerTech, (2010), 3, pp. 43-47
  25. Kosel D. und Meyer H., Requirements for Cleaning of the Flue Gass in Oxyfuel-Process (in German language), Anforderungen an die Rauchgasreinigung im Oxyfuel-Prozess.VGB PowerTech, (2010), 4, pp. 56-58
  26. Rohlfs W., Madlener R., Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness, Energy, 52 (2013), pp. 27-36
  27. Steffen, B., Weber, C., Efficient Storage Capacity in Power Systems with Thermal and Renewable Generation, Energy Economics, 36 (2013), pp. 556-67
  28. Tarroja B., Mueller F., Eichman J.D. and Samuelsen S., Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing, Energy, 42 (2012), pp. 546-62
  29. Hofmann, D., Zimmermann, H., CCS Fossil Power Generation in a Carbon Constraint World, VGB PowerTech, (2009), 12, pp. 42-46
  30. Sovacool, B., K., Cooper, C., Parenteau, P. From a hard place to a rock: Questioning the energy security of a coal-based economy, Energy Policy, 46 (2012), pp. 193-202
  31. Grković V., Controversies concerning modern power supplies and concept of future thermal power plants (in Serbian language), Annals of the branch of SANU in Novi Sad, 9 (2013), pp. 36-45
  32. Johnsson F., Kjarstad J. and Odenberger M., The importance of CO2 capture and storage - a geopolitical discussion, Thermal Science, 16, (2012), 3, pp. 655-668.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence