THERMAL SCIENCE

International Scientific Journal

External Links

INVESTIGATION OF HEAT TRANSFER AND VISCOUS DISSIPATION EFFECTS ON THE JEFFERY-HAMEL FLOW OF NANOFLUIDS

ABSTRACT
This article considers the influence of heat transfer on the nonlinear Jeffery-Hamel flow problem in a nanofluid. Analysis is performed for three types of nanoparticles namely copper Cu, alumina Al2O3 and titania TiO2 by considering water as a base fluid. The resulting nonlinear mathematical problems are solved for both analytic and numerical solutions. Analytic solution is developed by using differential transformation method (DTM) whereas the numerical solution is presented by Runge-Kutta scheme. A comparative study between the analytical and numerical solutions is made. Dimensionless velocity and temperature, skin friction coefficient and Nusselt number are addressed for the involved pertinent parameters. It is observed that the influence of solid volume fraction of nanoparticles on the heat transfer and fluid flow parameters is more pronounced when compared with the type of nanoparticles. It is also found that skin friction coefficient and Nusselt number for Al2O3 nanofluid is highest in comparison to the other two nanoparticles.
KEYWORDS
PAPER SUBMITTED: 2012-04-10
PAPER REVISED: 2012-08-18
PAPER ACCEPTED: 2012-11-19
DOI REFERENCE: https://doi.org/10.2298/TSCI120410208M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 2, PAGES [563 - 578]
REFERENCES
  1. Goldstein, S., Modern developments in fluid mechanics, Oxford, 1938.
  2. Rosenhead, L., The steady two-dimensional radial flow of viscous fluid between two inclined plane walls, Proc. Roy. Soc A, 175 (963) (1940), pp. 436-467.
  3. Makinde, O. D., Effect of arbitrary magnetic Reynolds number on MHD flow in convergent-divergent channels, Int. J. Numer. Methods Heat Fluid Flow, 18 (2008), pp. 697-707.
  4. Reza, M. S., Channel entrance flow, PhD thesis, Department of Mechanical Engineering , University of Western Ontario, 1997.
  5. McAlpine, A., Drazin, P. G., On the spatio-temporal development of small perturbations of Jeffery-Hamel flows, Fluid Dynamic Research, 22 (3) (1998), pp. 123-138.
  6. Ganji, Z. Z., Ganji, D. D., Esmaeilpour, M., Study on nonlinear Jeffery-Hamel flow by He's semi-analytical methods and comparison with numerical results, Comput. Math. Appl., 58 (2009), pp. 2107-2116.
  7. Esmaili, Q., Ramiar, A., Alizadeh, E., An approximation of the analytical solution of the Jeffery-Hamel flow by decomposition method, Phys. Letter A, 372 (2008), pp. 3434-3439.
  8. Makinde, O. D., Mhone, P. Y., Hermite-Pade approximation approach to MHD Jeffery-Hamel flows, Appl. Math. Comput., 181 (2006), pp. 966-972.
  9. Domairy, G., Mohsenzadeh, A., Famouri, M., The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow, Comm. Nonlinear Sci. Numer. Simulat., 14 (2008), pp. 85-95.
  10. Motsa, S. S., Sibanda, P., Awad, F. G., Shateyi, S., A new spectral homotopy analysis method for the MHD Jeffery-Hamel flow problem, Computer& Fluids, 39 (2010), pp. 1219-1225.
  11. Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticle, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66 (1995), pp. 99-105.
  12. Das, S. K., Choi, S. U. S., Yu, W., Pradeep, T., Nanofluids: Science and Technology, John Wiley& Sons Inc., New York, 2007.
  13. Chen, H., Ding, Y., Heat transfer and rheological behavior of nanofluids a review, Adv.Tranp. Phenomena 1 (2009), pp. 135-177.
  14. Abu-Nada, E., Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat Fluid Flow, 29 (2008), pp. 242-249.
  15. Tiwari, R. J., Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50 (2007), pp. 2002-2018.
  16. Maïga, S.E. B., Palm, S. J., Nguyen, C. T., Roy, G., Galanis, N., Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow 26 (2005), pp. 530-546.
  17. Polidori, G., Fohanno, S., Nguyen, C. T., A note on heat transfer modeling of Newtonian nanofluids in laminar free convection, Int. J. Thermal Sci., 46 (2007), pp. 739-744.
  18. Oztop, H. F., Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008), pp. 1326-1336.
  19. Nield, D. A., Kuznetsov, A. V., The Cheng- Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer, 52 (2009), pp. 5792-5795.
  20. Kuznetsov, A. V., Nield, D. A., Natural convection boundary layer flow of nanofluid past a vertical plate, Int. J. Thermal Sci., 49 (2010), pp. 243-247.
  21. Kuznetsov, A. V., Nield, D. A., Double-diffusive natural convection of boundary layer flow of nanofluid past a vertical plate, Int. J. Thermal Sci., 50 (2011), pp. 712-717.
  22. Nield, D. A., Kuznetsov, A. V., The Cheng- Minkowycz problem for double-diffusive natural convection boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer, 54 (2011), pp. 374-378.
  23. Izadi, M., Behzadmehr, A., Vahida, D. J., Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Thermal Sci., 48 (2009), pp. 2119-2129.
  24. Cheng, P., Minkowcyz, W. J., Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., 82 (1977), pp. 2040-2044.
  25. Khan, W. A., Aziz, A., Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux, Int. J. Thermal Sci., 50 (2011), pp. 1207-1214.
  26. Mahmoodi, M., Numerical simulation of free convection of nanofluid in a square cavity with an inside heater, Int. J. Thermal Sci., 50 (2011), pp. 2161-2175.
  27. Hassani, M., Tabar, M. M., Nemati, H., Domairy, G., Noori, F., An analytical solution for boundary layer flow of a nanofluid past a stretching sheet, Int. J. Thermal Sci., 50 (2011), pp. 2256-2263.
  28. Judy, J., Maynes, D., Webb, B. W., Characterization of frictional pressure drop for liquid flows through microchannels, Int. J. Heat Mass Transfer, 45 (2002), pp. 3477-3489.
  29. Tso, C. P., Mahulikar, S. P., Experimental verification of the role of Brinkman number in microchannels using local parameters, Int. J. Heat Mass Transfer, 43 (2000), pp. 1837-1849.
  30. Morimi, G. L., Viscous heating in liquid flows in microchannels, Int. J. Heat Mass Transfer, 48 (2005), pp. 3637-3647.
  31. Das, S. K., Putra, N., Roetzel, W., Pool boiling characteristics of nanofluids, Int. J. Heat Mass Transfer, 46 (2003), pp. 851-862.
  32. Koo, J., Kleinstreuer, C., Laminar nanofluid flow in micro-heat sinks, Int. J. Heat Mass Transfer, 48 (2005), pp. 2652-2661.
  33. Hady, F. M., Ibrahim, F. S., Abdel-Gaeid, S. M., Eid, M. R., Radiation effect on viscous flow of nanofluid and heat transfer over a nonlinearly stretching sheet, Naoscale Res. Lett., 7(1) (2012), pp. 224-236.
  34. Motsumi, T. G., Makinde, O. D., Effects of thermal radiation and viscous dissipation on boundary later flow of nanofluids over a permeable moving flat plate, Phy. Scr. 86 (2012) 045003-0450010.
  35. Hung, Y. M., Analytic study on forced convection of nanofluids with viscous dissipation in microchannels, Heat Transfer Eng. 31(14) (2010), pp. 1184-1192.
  36. Kuznetsov, A. V., Xiong, M., Nield, D. A., Thermally developing forced convection in a porous medium: Circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects, Trans. Porous Media, 53 (2003), pp. 331-345.
  37. Nield, D. A., Kuznetsov, A. V., Xiong, M., Thermally developing forced convection in a porous medium: Parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects, Int. J. Heat Mass Transfer, 46 (2003), pp. 343-351.
  38. Nield, D. A., Kuznetsov, A. V., Xiong, M., Effects of viscous dissipation and flow work on forced convection in a channel filled by a saturated porous medium, Trans. Porous Media, 56 (2004), pp. 351-367.
  39. Zhou, J. K., Differential transformation method and its application for electrical circuits, Hauzhang Univ. press, Wuhan, China, 1986.
  40. Rashidi, M. M., Erfani, E., New analytical method for solving Burgers, and nonlinear heat transfer equation and comparison with HAM, Comp. Phys. Commun., 180 (2009), pp. 1539-1544.
  41. Joneidi, A. A., Ganji, D. D., Babaelahi, M., Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 36 (2009), pp. 757-762.
  42. Chang, S. H., Chang, I. L., A new algorithm for calculating one-dimensional differential transformation of nonlinear functions, Appl. Math. Comput., 195 (2008), pp. 799-808.
  43. Chang, S. H., Chang, I. L., A new algorithm for calculating two-dimensional differential transformation of nonlinear functions, Appl. Math. Comput., 215 (2009), pp. 2486-2494.
  44. Jang, B., Solving linear and nonlinear initial value problems by the projected differential transform method, Comp. Phys. Commun., 181 (2010), pp. 848-854.
  45. M. M. Rashidi, E. Erfani, A new analytical study of MHD stagnation-point flow in porous medium with heat transfer, Computer &Fluid 40 (2011) 172-178.
  46. Rashidi, M. M., The modified differential method for solving MHD boundary-layer equations, Comp. Phys. Commun., 180 (2009), pp. 2210-2217.
  47. Chen, C. K., Ju, S. P., Application of differential transformation to transient advective dispersive transport equation, Appl. Math. Comput., 155 (2004), pp. 25-38.
  48. Chen, C. K., Chen, S. S., Application of the differential transformation method to a non-linear conservative system, Appl. Math. Comput., 154 (2004), pp. 431-441.
  49. Franco, A., An analytic method for the optimum thermal design of convective longitudinal fin arrays, Heat Mass Transfer 45 (2009), pp. 1503-1517.
  50. Brinkman, H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952), pp. 571-581
  51. Esmaeilpour, M., Ganji, D. D., Solution of Jeffery-Hamel flow problem by optimal homotopy asymptotic method, Comp. Math. Appl., 59 (2010), pp. 3405-3411.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence