International Scientific Journal


This paper deals with simulation of the spreading and solidification of a fully molten particle impacting onto a preheated substrate under traditional plasma spraying conditions. The multiphase problem governing equations of mass, momentum and energy conservation taking into account heat transfer by conduction, convection and phase change are solved by using a Finite Element approach. The interface between molten particle and surrounding air, is tracked using the Level Set method. The effect of the Reynolds number on the droplet spreading and solidification, using a wide range of impact velocities (40-250m/s), is reported. A new correlation that predicts the final spread factor of splat as a function of Reynolds number is obtained. Thermal contact resistance, viscous dissipation, wettability and surface tension forces effects are taken into account.
PAPER REVISED: 2013-06-25
PAPER ACCEPTED: 2013-07-16
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 1, PAGES [277 - 284]
  1. Fauchais, P., Understanding plasma spraying, J. Phys. D: Appl. Phys, 37 (2004), pp.86-108.
  2. Fataoui, K. Pateyron, B. El Ganaoui, M. Rhanim, H. Belafhal A.,Simulation of the thermal history and induced mechanical stresses during a plasma spray coating process. Phys. Chem. News, 40 (2008), pp. 23-28.
  3. Fauchais, P., Fukumoto, M., Vardelle, A., Vardelle, M, Knowledge concerning splat formation: An invited Review, J. Therm. Spray Technol. 13 (2004 b), pp. 337-360.
  4. Cedelle, J., Vardelle, M., Pateyron, B., Fauchais,P, Investigation of plasma sprayed coatings formation by visualization of droplet impact and splashing on a smooth substrate, IEEE Transactions on Plasma Science. 33 (2005), 21, pp. 414-415.
  5. Mehdizadeh, N. Z., et al., Photographing Impact of Molten Molybdenum Particles in a Plasma Spray J. Therm. Spray Technol. 14 (2005), 3, pp.354-361.
  6. Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys,114 (1994),pp.146-159.
  7. Zhao, Z. Poulikakos D. and Fukai, J., Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate: II Experiments, Int. J. Heat Mass Transf., 39 (1996), pp. 2791-2802.
  8. Bussmann, M., Mostaghimi, J. and Chandra, S., On a Three-Dimensional Volume Tracking Model of Droplet Impact, Physics of Fluids, 11 (1999), pp. 1406-1417.
  9. Oukach, S., Hamdi, H., El Ganaoui, M. and Pateyron, B., Thermal Effects on the Spreading and Solidification of a Micrometric Molten Particle Impacting onto a Rigid Substrate, FDMP: Fluid Dynamics & Materials Processing, 8 (2012), 2, pp. 173-196.
  10. Jones, H., Cooling freezing and substrate impact of droplets formed by rotary atomization, J. Phys. D: Appl. Phys, 4(1971), pp. 1657-1660.
  11. Pasandideh-fard, M., Qiao, Y. M., Chandra, S., mostaghimi, J., Capillary effects during droplet impact on a solid surface, Physics of Fluids, 8 (1996), 3, pp. 650-659.
  12. Yoshida, T., Okada, H., Hamatani, H., Kumaoka, H., Integrated Fabrication Process for Solid Oxide Fuel Cells Using Novel Plasma Spraying, Plasma Sources Science and Technology, 1 (1992), pp 195-201.
  13. Madejski, J., Solidification of Droplets on a Cold Surface, Int. Journal of Heat and Mass Transfer, 19 (1976), pp. 1009-1013.
  14. Zhang, H., Theoretical Analysis of Spreading and Solidification of Molten Droplet during Thermal Spray Deposition, Int J Heat Mass transfer, 42 (1999),14, pp. 2499-2508.
  15. Liu, H. Lavernia, E.J. Rangel, R.H., Numerical Simulation of Impingement of Molten Ti, Ni and W Droplets on a Flat Substrate, .J.Therm, Spray Technol. 2 (1993),4, pp 369-377.
  16. Trapaga, G. Szekely, J., Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metall. Trans. 22B (1991), pp. 901-914.
  17. Bertagnolli, M. Marchese, M. Jacucci, G., Modeling of Particles Impacting on a Rigid Substrate under Plasma Spraying Conditions, J. Thermal. Spray Technol, 4(1995),1, pp. 41-49.
  18. Watanabe, T. Kuribayashi, I. Honda, T. Kanzawa, A., Deformation and Solidification of a Droplet on a Cold Substrate, Chem. Eng. Sci. 47 (1992), pp. 3059-3065.
  19. Sethian, J., Level Set Methods, Cambridge University Press, Cambridge, 1996.
  20. Voller, V.R. Markatos N. and Cross, M., An enthalpy method for convection-diffusion phase change, Int.J. Numerical Methods in Engineering, 24 (1987), pp. 271-284.
  21. Oukach, S., El Ganaoui, M. Hamdi, H. and Pateyron, B., Deformation behavior of a liquid droplet impacting on a solid surface, Proceeding of the 6th annual European COMSOL Conference, November 17-19, Paris, France (2010).
  22. Oukach, S. Pateyron, B. El Ganaoui M. and Hamdi, H. Simulation numerique de l'etalement d'une goutte sur une paroi, Proceeding du 1er Congrès de l'Association Marocaine de Thermique (AMT 2010), Mai 6 -7, Settat, Maroc (2010), pp. 101-108.
  23. Mebdoua, Y., Etude Numérique des Phénomènes Thermiques Contrôlant la Solidification d'une Lamelle en Projection Thermique : Application à la Formation du Dépôt, Ph. D. thesis, university of Limoges. France,2008.
  24. Engel, O.G., Initial Pressure, Initial Flow Velocity, and the Time Dependence of Crater Depth in Fluid Impacts, J. Appl. Phys. 38 (1967), pp. 3935-3940..
  25. Heymann, F.J., High-speed impact between a liquid drop and a solid surface, J. App.Phys, 40 (1969), pp 5113-5122.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence