International Scientific Journal


Convective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2x104 to 105and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu=f(Lf,Re).
PAPER REVISED: 2013-05-30
PAPER ACCEPTED: 2013-06-21
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2015, VOLUME 19, ISSUE Issue 1, PAGES [141 - 154]
  1. Polat, S. Huang, B. Mujumdar, A.S. Douglas, W.J.M., Numerical flow and heat transfer under impinging jets, Annual Review of Numerical Fluid Mechanics and Heat Transfer 2 (1989) 157-197
  2. Gilard, V. and Brizzi, L. E., Slot Jet Impinging a Curved Wall, Journal of Fluids Engineering,(2005), vol. 127, 595-603
  3. Gilard, V. and Brizzi, L. E., Etude d'une ligne de jets impactant une paroi concave par PIV stéréoscopique, Comptes Rendus Mécanique, 2006, vol. 334, pp. 74-82
  4. Choi, M. Yoo, H. S. Yang, G. Lee, J. S. and Sohn, D. K., Measurements of impinging jet flow and heat transfer on a semi-circular concave surface, International Journal of Heat and Mass Transfer 43 (2000) 1811-1822
  5. Shuja, S. Z., Yilbas, B.S., Budair, M.O., Jet impingement on cylindrical cavity: Conical nozzle considerations, Journal of Fluids and Structures 23 (2007) 1106-1118
  6. Shuja, S. Z., Yilbas, B.S., Khan, S., Flow emerging from annular-conical nozzle combinations and impinging onto a cylindrical cavity, International Journal of Thermal Sciences 48 (2009) 975-984
  7. Shuja, S. Z., Yilbas, B.S., Khan, S., Jet impingement onto a conical cavity: Effects of annular nozzle outer angle and jet velocity on heat transfer and skin friction, International Journal of Thermal Sciences 48 (2009) 985-997
  8. Terekhov, V.I. Kalinina, S.V. Mshvidobadze, Yu.M. andSharov, K.A., Impingement of an impact jet onto a spherical cavity. Flow structure and heat transfer, Inter Journal of Heat and Mass Transfer 52 (2009) 2498-2506
  9. Colucci, D. W. and Viskanta, R., Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet, Experimental Thermal and Fluid Science 1996; 13:71-80
  10. Tzer-Ming Jeng, Sheng-Chung Tzeng, Numerical study of confined slot jet impinging on porous metallic foam heat sink, International Journal of Heat and Mass Transfer 48 (2005) 4685-4694
  11. Mataoui, A. Schiestel, R. and Salem, A., Flow Regimes of Interaction of a Turbulent Plane Jet into a Rectangular Cavity: Experimental Approach and Numerical Modelling, Flow, Turbulence and Combustion 67: 267-304, 2001
  12. Mataoui, A. Schiestel, R., Unsteady phenomena of an oscillating turbulent jet flow insidea cavity:Effect of aspect ratio, Journal of Fluids and Structures 25 (2009) 60-79
  13. Jaramillo, J.E. Trias, F.X. Gorobets, A. Pérez-Segarra, C.D. Oliva,A., DNS and RANS modeling of a turbulent plane impinging jet, International Journal of Heat and Mass Transfer 55 (2012) 789-801
  14. Lawsona, N.J. Arruda, M.P. Davidson,M.R., Control of a submerged jet in a thin rectangular cavity, Journal of Fluids and Structures 20 (2005) 1025-1042
  15. Schwarze, R. Klostermann, J. Brücker, C., Experimental and numerical investigations of a turbulent round jet into a cavity, Inter Journal of Heat and Fluid Flow 29 (2008) 1688-1698
  16. Kang, H. Tao, W., Heat and mass transfer for jet impingement in a cylindrical cavity with one end open to the ambiant air, AIAA Paper 89 - 0173, (1989)
  17. Risso, F. Fabre, J., Diffusive Turbulence in a Confined Jet Experiment, J. Fluid Mech. 337233-261, (1997).
  18. Baydar, E. Ozmen,Y., An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers, Applied Thermal Engineering 25 (2005) 409-421
  19. Prakasha, M. Turan, Ö. F. Yuguo Li, Mahoney, J. Thorpe,G. R., Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part I—Flow visualisations and simulations,Chemical Engineering Science 56 (2001) 3855-3878
  20. Prakasha, M. Turan, Ö. F. Yuguo Li, Mahoney, J. Thorpe, G. R., Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part II—LDV measurements and simulations, Chemical Engineering Science 56 (2001) 3879-3892
  21. Graminho, D.R. and De Lemos, M.J.S., Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom, Inter Journal of Heat and Mass Transfer 52 (2009) 680-693
  22. Benaissa,A., Contribution à l'étude de l'évolution d'un jet d'air à symétrie axiale dans une cavité cylindrique, Thèse de Magister, Mécanique des Fluides, USTHB, Alger, Sept. (1985)
  23. Kendil, F. Z. Mataoui, A. Benaissa , A.,Flow Structures of a Round Jet Evolving into a Cylindrical Cavity, International Journal of Transport Phenomena, Vol. 11, No. 2, pp. 165-183, 2009
  24. Chandratilleke, T. T., King, A., and Narayanaswamy, R., Heat transfer and flow characteristics of fluid jets impinging on a surface with cavities, Journal of Enhanced Heat Transfer (2010) (17) (3): 223-229 (3).
  25. Voropayev,S. I. Sanchez, X. Nath, C. Webb, S. and Fernando, H. J. S., Evolution of a confined turbulent jet in a long cylindrical cavity: Homogeneous fluids, Physics Of Fluids 23, 115106 (2011)
  26. Launder, B.E. Reece, G.J. and Rodi, W., Progress in the developments of a Reynolds-stress turbulence closure, J. Fluid Mechanics, (1975) Vol. 68, pp.537-566
  27. Speziale, C.G., Sarkar, S. and Gatski, T.B., Modeling the pressure-strain correlation of turbulence: an invariant dynamical systems approach, J. Fluid Mechanics, (1991) Vol. 277, pp. 245-272
  28. Launder, B.E., Spalding, D.B., The Numerical of Computation of Turbulent Flow, Computer Methods in Applied Mechanics and Engineering,(1974), 3, 269
  29. Kim SE, Choudhury D., A near-wall treatment using wall functions sensitized to pressure gradient, ASME FED (1995) Vol. 217, Separated and Complex Flows
  30. Tani I. and Komatsu Y., Impingement of a round jet on a flat surface, The International Congress of Applied Mechanics Munich, Springer, Berlin, (1966) pp. 672-676
  31. Quan, L. Study of heat transfer characteristics of impinging air jet using pressure and temperature sensitive luminescent paint, Ph. D. thesis, University of Central Florida, Florida, USA, 2006
  32. Tadhg, S. O'Donovan, Murray, D. B., Jet impingement heat transfer - Part I: Mean and root-mean-square heat transfer and velocity distributions, International Journal of Heat and Mass Transfer 50 (2007) 3291-3301

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence