International Scientific Journal


The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.
PAPER REVISED: 2012-02-18
PAPER ACCEPTED: 2012-03-11
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2013, VOLUME 17, ISSUE Issue 4, PAGES [1207 - 1219]
  1. Mahesh, S., Mishra, D.P., Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner, Fuel, 87 (2008), pp. 2614-2619
  2. Mahesh, S., Mishra, D.P., Flame structure of LPG-air Inverse Diffusion Flame in a backstep burner, Fuel, 89 (2010), pp. 2145-2148
  3. Sze, L.K., Cheung, C.S., Leung, C.W., Appearance temperature and NOx emission of two inverse diffusion flames with different port design, Combustion and Flame, 144 (2006), pp. 237-248
  4. Sobiesiak, A., Wenzell, J., C., Characteristics and structure of inverse flames of natural gas, Proceedings of the Combustion Institute, 30 (2005), pp. 743-749
  5. Fernández-Tarrazo, E., Vera, M., Liñán, A., Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air, Combustion and Flame, 144 (2006), pp. 261-276
  6. Santos, A., Costa, M., Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames, Combustion and Flame, 142 (2005), pp. 160 -169
  7. Meunier, Ph., Costa, M., Carvalho, M. G., On NOx Emissions from Turbulent Propane Diffusion Flames, Combustion and Flame, 112 (1998), pp.221-230
  8. Montgomery, C. J., Kaplan, C. R., Oran, E. S., The effect of coflow velocity on a lifted methaneair jet diffusion flame, Twenty-Seventh Symposium on Combustion/The Combustion Institute, 1998, pp. 1175-1182
  9. Oh, J., Khan, Q. S., Yoon, Y., Nitrogen dilution effect on flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air, Fuel, 89 (2010), pp. 1492-1498
  10. Mishra , D.P., Kumar, P., Experimental investigation of lamianr LPG-H2 jet diffusion flame with preheated reactants, Fuel, 87 (2008), pp. 3091-3095
  11. El-Ghafour, S.A.A., El-dein, A.H.E., Aref, A.A.R., Combustion characteristics of natural gas- hydrogen hybrid fuel turbulent diffusion flame, International journal of hydrogen energy, 35 (2010), pp. 2556 - 2565
  12. Oh, J., Heo, P., Yoon, Y., Acoustic excitation effect on NOx reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air, International journal of hydrogen energy , 34 (2009), pp. 7851 - 7861
  13. wyzgolik, A., Stabilisation d'une flamme non prémélangée dans un écoulement de jets coaxiaux. Effet d'un champ acoustique, Thèse, Faculté des Sciences de l'Université de Rouen, 2008
  14. Lee, K.W., Choi, D.H., Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model, International Journal of Heat and Mass Transfer, 52 (2009), pp. 1412-1420
  15. Masson, E., Etude expérimentale des champs dynamiques et scalaires de la combustion sans flamme, Thèse, Institut National des sciences Appliquées de Rouen, 2005
  16. Choi, G. M., Katsuki, M., Advanced low NOx combustion using highly preheated air, Energy Conversion and Management, 42 (2001), pp. 639 - 652
  17. Boushaki, T., Mergheni, M.A., Sautet, J.C., Labegorre, B., Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner, Experimental Thermal and Fluid Science, 32 (2008), pp. 1363-1370
  18. Lederlin, Th., Conception et étude expérimentale et numérique d'un système de contrôle de trajectoire et mélange des jets de gaz dans les bruleurs à oxygène, Thèse, Institut National Polytechnique Toulouse, 2007
  19. Faivre, V., Etude expérimentale et numérique du contrôle actif de jets dans des chambres de combustion. Thèse, Institut National Polytechnique Toulouse, 2003
  20. Delmaere, Th., Etude de l'effet d'un gradient de champ magnétique sur le développement de flammes de diffusion laminaires. Thèse, Ecole Doctorale Sciences et Technologies ICARE CNRS Orléans, 2008
  21. Launder, B.E., Spalding, D.B., The numerical computation of turbulent flows, Computer Methods in Mechanics and Engineering, 3 (1974), pp. 269-289
  22. Chen, L., Zheng, S., Yong, Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science, 38 (2012), pp. 156-214
  23. Brookes, S.J., Moss, J.B., Measurements of soot and thermal radiation from confined turbulent jet diffusion flames of methane, Combustion and Flame, 116 (1999) pp. 49-61
  24. Salentey, L., Etude expérimentale du comportement de bruleurs à jets séparés application à la combustion gaz naturel-oxygène pur, Thèse, Faculté des Sciences et Techniques de l'Université de Rouen, 2002

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence