THERMAL SCIENCE
International Scientific Journal
A CERTAIN ANALYTICAL METHOD USED FOR SOLVING THE STEFAN PROBLEM
ABSTRACT
The paper presents an analytic method applied for finding the approximate solution of Stefan problem reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial extension of a sought function describing the field of temperature into the power series, some coefficients of which can be determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which can be obtained by solving the appropriate differential equations. Results received by applying the proposed procedure will be compared with the results obtained with the aid of a classical numerical method served for solving the Stefan problem.
KEYWORDS
PAPER SUBMITTED: 2012-08-26
PAPER REVISED: 2013-01-30
PAPER ACCEPTED: 2013-04-24
PUBLISHED ONLINE: 2013-06-01
THERMAL SCIENCE YEAR
2013, VOLUME
17, ISSUE
Issue 3, PAGES [635 - 642]
- Crank, J., Free and Moving Boundary Problems, Clarendon Press, Oxford, 1996
- Gupta, S.C., The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Else- vier, Amsterdam, 2003
- Alexiades, V., Solomon, A.D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publ. Corp., Washington, 1993
- Rubinstein, L.I., The Stefan Problem, AMS, Providence, 1971
- Kondrashov, E.N., The analytical solution of the one alloy solidification problem, Int. J. Heat Mass Transfer, 52, (2009), 1-2, pp. 67-69
- Zerroukat, M., Chatwin, C.R., Computational Moving Boundary Problems, Research Stud- ies Press, Taunton, 1994
- Voller, V.R., Swaminathan, C.R., General source-based method for solidification phase change, Numer. Heat Transfer B, 19 (1991), 2, pp. 175-189
- Caldwell, J., Chan, Ch.Ch., Numerical solutions of the Stefan problem by the enthalpy method and the heat balance integral method, Numer. Heat Transfer B, 33 (1998), 1, pp. 99-117
- Furenes, B., Lie, B., Using event location in finite-difference methods for phase-change problems, Numer. Heat Transfer B, 50 (2006), 2, pp. 143-155
- Feulvarch, E., Bergheau, J.M., An implicit fixed-grid method for the finite-element analysis of heat transfer involving phase changes, Numer. Heat Transfer B, 51 (2007), 6, pp. 585-610
- Grzymkowski, R., S lota, D., Stefan problem solved by Adomian decomposition method, Int. J. Comput. Math., 82 (2005), 7, pp. 851-856
- Grzymkowski, R., Pleszczy´nski, M., S lota, D., Comparing the Adomian decomposition method and Runge-Kutta method for the solutions of the Stefan problem, Inter. J. Com- puter Math., 83 (2006), 4, pp. 409-417
- S lota, D., Direct and inverse one-phase Stefan problem solved by variational iteration method, Comput. Math. Appl., 54 (2007), 7-8, pp. 1139-1146
- S lota, D., Zielonka, A., A new application of He's variational iteration method for the solution of the one-phase Stefan problem, Comput. Math. Appl., 58 (2009), 11-12, pp. 2489-2494
- Hetmaniok, E., S lota, D., Witu la, R., Zielonka, A., Comparison of the Adomian decomposi- tion method and the variational iteration method in solving the moving boundary problem, Comput. Math. Appl., 61 (2011), 8, pp. 1931-1934
- Rajeev, K.N. Rai, S. Das, Solution of one-dimensional moving boundary problem with periodic boundary conditions by variational iteration method, Thermal Science, 13 (2009), 2, pp. 199-204
- Hristov, J., An exercise with the He's variation iteration method to a fractional Bernoulli equation arising in transient conduction with non-linear heat flux at the boundary, Int. Rev. Chem. Eng., 4 (2012), 5, pp. 489-497
- Hetmaniok, E., Kaczmarek, K., S lota, D., Witu la, R., Zielonka, A., Application of the variational iteration method for determining the temperature in the heterogeneous casting- mould system, Int. Rev. Chem. Eng., 4 (2012), 5, pp. 511-515
- Das, S., Rajeev, An approximate analytical solution of one-dimensional phase change prob- lems in a finite domain, Appl. Math. Comput., 217 (2011), 13, pp. 6040-6046
- Rajeev, Kushwaha, M.S., Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation, Appl. Math. Modelling, 37 (2013), 5, pp. 3589- 3599
- Hristov, J., Heat-balance integral to fractional (half-time) heat diffusion sub-model, Ther- mal Science, 14 (2010), 2, pp. 291-316
- Hristov, J., Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution, Int. Rev. Chem. Eng., 3 (2011), 3, pp. 802-809
- Hristov, J., Starting radial subdiffusion from a central point through a diverging medium (a sphere): heat-balance integral method, Thermal Science, 15 (2011), 1, pp. 5-20
- Hetmaniok, E., Pleszczy´nski, M., Analitycal method of determining the freezing front lo- cation, Scientific Notes of Silesian University of Technology, Series: Applied Mathematics (Zeszyty Nauk. Pol. ´Sl. Mat. Stos.), 1 (2011), 1, pp. 121-136
- Hetmaniok, E., Pleszczy´nski, M., Application of the analytic-numerical method in solving the problem with moving boundary, Scientific Notes of Silesian University of Technology, Series: Applied Mathematics (Zeszyty Nauk. Pol. ´Sl. Mat. Stos.), 2 (2012), 1, pp. 57-74
- Grzymkowski, R., Hetmaniok, E., Pleszczy´nski, M., Analytic-numerical method of deter- mining the freezing front location, Arch. Foundry Eng., 11 (2011), 3, pp. 75-80
- Grzymkowski, R., Hetmaniok, E., Pleszczy´nski, M., Problem of the moving boundary in continuous casting solved by the analytic-numerical method, Arch. Foundry Eng., 13 (2013), 1, pp. 33-38
- Mochnacki, B., Suchy, J.S., Numerical Methods in Computations of Foundry Processes, PFTA, Cracow, 1995