International Scientific Journal

Authors of this Paper

External Links


The aim of the paper is the analysis of the energetic performances of structured and pelletized aftertreatment systems in flow-through and reverse-flow designs (passive and active flow control respectively) for diesel internal combustion engines. To this purpose, the influence of the engine operating conditions on the system performances has been investigated adopting a one-dimensional time-dependent model. Specifically, the thermal behaviour and the fuel saving capability of several arrangements have been characterized. The analysis has shown that the active emission control system with pelletized design guarantees higher heat retention capability. Furthermore, the numerical model has revealed the significant influence of the solid and exhaust gas temperature on the energy efficiency of the aftertreatment systems and the large effect of exhaust mass flow rate and unburned hydrocarbons concentration.
PAPER REVISED: 2011-07-27
PAPER ACCEPTED: 2011-09-16
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE Issue 4, PAGES [1049 - 1064]
  1. Tan, P. Q., Hu, Z. Y., Deng, K. Y., Lu, J. X., Lou, D.M., Wan, G., Particulate matter emission modelling based on soot and SOF from direct injection diesel engines, Energy Conversion and Management, 48 (2007), 2, pp. 510-518.
  2. Johnson, T. V., Diesel Emission Control in Review, SAE International Journal of Fuels and Lubricants, 2 (2009), pp. 1-12.
  3. Kesgin, U., Study on prediction of the effects of design and operating parameters on NOx emissions from a leanburn natural gas engine, Energy Conversion and Management, 44 (2003), 6, pp. 907-921.
  4. Iwamoto, J., Wada, K., Shiraishi, R., Mikami, H., Motohashi, G., Ohno, H., Feasibility Study of NOx Reduction with the Active Exhaust Control System when Engine Starting, Proceedings, FISITA 2010 World Automotive Congress, Budapest, Hungary, 2010.
  5. Petrović, V. S., Particulate Matters from Diesel Engine Exhaust Emission, Thermal Science, 12 (2008), 2, pp. 183-198.
  6. Pontikakis, G., Stamatelos, A., Three-Dimensional Catalytic Regeneration Modeling of SiC Diesel Particulate Filters, Journal of Engineering for Gas Turbines and Power, 128 (2006); pp. 421-433.
  7. Filipi, Z., Hagena, J., Fathy, H., Investigating the impact of in-vehicle transients on diesel soot emissions, Thermal Science, 12 (2008), 1, pp. 53-72.
  8. Petković, S. D., Pešić, R. B., Lukić, J. K., Heat transfer in exhaust system of a cold start engine at low environmental temperature, Thermal Science, 14 (2010), Suppl., pp. S209-S220.
  9. Lehtoranta, K., Matilainen, P., Kinnunen, T.-J. J., Heikkilä, J., Rönkkö, T., Keskinen, J., Murtonen, T., Diesel Particle Emission Reduction by a Particle Oxidation Catalyst Proceedings, SAE 2009 Powertrains Fuels and Lubricants Meeting, San Antonio, USA, SAE paper 2009-01- 2705, 2009.
  10. Kim, D. S., Park, Y. J., Lee, S. W., Cho, Y. S., A study on characteristics and control strategies of cold start operation for improvement of harmful exhaust emissions in SI engines, Journal of Mechanical Science and Technology, 22 (2008), pp. 141-147.
  11. Ji, Y., Fisk, C., Easterling, V., Graham, U., Poole, A., Crocker, M., Choi, J.-S., Partridge, W., Wilson, K., NOx storage-reduction characteristics of Ba-based lean NOx trap catalysts subjected to simulated road aging, Catalysis Today, 151 (2010), 3-4, pp. 362-375.
  12. Kowatari, T., Hamada, Y., Amou, K., Hamada, I., Funabashi, H., Takakura, T., Nakagome, K., A Study of a New Aftertreatment System (1): A New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR, SAE Transactions - Journal of Fuels and Lubricants, 115 (2006), pp. 244-251.
  13. Heywood, J. B., Internal Combustion Engine Fundamentals, Mc Graw Hill, New York, 1988.
  14. Zheng, M., Reader, G. T., Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines, Energy Conversion and Management, 45 (2004), pp. 2473-2493.
  15. Güthenkea, A., Chatterjeea, D., Weibela, M., Waldbüßera, N., Kočíb, P., Marekb, M., Kubíčekc, M., Development and application of a model for a NOx storage and reduction catalyst, Chemical Engineering Science, 62 (2007), pp. 5357-5363.
  16. Cauda, E., Fino, D., Saracco, G., Specchia, V., Preparation and regeneration of a catalytic diesel particulate filter, Chemical Engineering Science, 62 (2007), pp. 5182-5185.
  17. Papadakis, K., Odenbrand, C. U. I., Creaser, D., Stationary NOx Storage and Reduction Experiments on a Heavy-Duty Diesel Engine Rig Using a Bypass System, 2003, SAE Paper 2003-01-1884.
  18. Johnson, T. V., Diesel Emission Control in Review, SAE Transactions - Journal of Fuels and Lubricants, 115 (2006), pp. 1-15.
  19. Burch, R., Breen, J. P., Meunier, F. C., A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalyst, Applied Catalysis B: Environmental, 39 (2002), pp. 283-303.
  20. Adelman, B., Karkkainen, A., Berke, P., Heibel, A., Parker, T., Pickles, D., Development and Application of a US-EPA ´07 Particulate Filter System for a 7.6l I-6 Medium Duty Truck Engine, Proceedings, 15th Aachen Kolloquium Fahrzeug- und Motorentechnik, Aachen, Germany, 2006.
  21. Parks II, E., Prikhodko, V., Storey, J. M. E., Barone, T. L., Lewis, Sr. S. A., Kass, M. D., Huff, P., Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices, Catalysis Today, 151 (2010), pp. 278-284.
  22. Akmadza, F., Status of the Euro 5/6 Legislation and Impact on Passenger Cars Engine Development and After Treatment Technology, Proceedings, Car Training Institute DPF Forum, Frankfurt, Germany,2007.
  23. Wada, K., Suzuki, N., Satoh, N., Morita, T., Yamaguchi, S., Ohno, H., Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines, 2007; SAE paper 2007-01- 1933.
  24. Grumbrecht, F., Krämer, L., Mönnig, R., Op de Beeck, J., Hünnekes, E., Joubert, E., Concept Development of an SCR Demonstrator Vehicle, Proceedings, Meeting Future European Emission Limits with Low Fuel Consumption. IAV MinNOx Conference, Berlin, Germany, 2007.
  25. Liu, B., Hayes, R. E., Checkel, M. D., Zheng, M., Mirosh, E., Reversing flow catalytic converter for a natural gas/diesel dual fuel engine, Chemical Engineering Science, 56 (2001), pp. 2641-2658.
  26. Singh, P., Thalagavara, A. M., Naber, J. D., Raux, S., Dorge, S., Gilot, P., Climaud, P., Sassi, A., Johnson, J., Bagley, S., An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst. SAE Transactions - Journal of Fuels and Lubricants, 115 (2006) pp. 334-357.
  27. Perry, R. H., Green, D. W., Perry's chemical engineers' handbook, 7th edition. Mc Graw Hill, New York, 1999.
  28. Guglielmini, G., Pisoni, C., Elementi di trasmissione del calore, Veschi Edizioni, Milano, 1990.
  29. Incropera, F., De Witt, D., Fundamentals of Heat and Mass Transfer, Wiley & Sons, USA, 2002.
  30. Rafidi, N., Blasiak, W., Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners, Applied Thermal Engineering, 25 (2005), pp. 2966-2982.
  31. Amelio, M., Morrone, P., Numerical evaluation of the Energetic Performances of Structured and Random Packed Beds in regenerative thermal oxidizers, Applied Thermal Engineering, 27 (2007), pp. 762-770.
  32. Amelio, M., Florio, G., Morrone, P., Senatore, S., The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO), International Journal of Energy Research, 32 (2008), pp. 24-34.
  33. Duffie, J. A., Beckman, W. A., Solar Engineering of Thermal Processes, Wiley-Interscience publication, Winsconsin, 1991.
  34. Gupta, A. S., Thodos, G., Direct analogy between mass and heat transfer to beds of spheres, A.I.Ch.E. Journal, 9 (1973), 6, 751-754.
  35. Lof, G. O. G., Hawley, R. W., Unsteady State Heat Transfer Between Air and Loose Solids, Industrial and Engineering Chemistry, 40 (1948), 6, pp. 1061-1070.
  36. Kunii, D., Levenspiel, O., Fluidization Engineering, Second Edition, Butterworth-Heinemann, Newton, 1991.
  37. Achenbach, E., Heat and Flow Characteristics of Packed Beds, Experimental Thermal and Fluid Science, 10 (1995), pp. 17-27.
  38. Morrone, P., Di Renzo, A., Di Maio, F. P., Amelio, M., Modelling process characteristics and performance of fixed and fluidized bed Regenerative Thermal Oxidizer (RTO), Industrial & Engineering Chemistry Research, 45 (2006), pp. 4782-4790.
  39. Algieri, A., Amelio, M., Morrone, P., A numerical analysis of energetic performances of active and passive aftertreatment systems, International Journal of Energy Research, 33 (2009), 7, pp. 696-708.
  40. Algieri, A., Amelio, M., Bova, S., Morrone, P., Active and Passive Aftertreatment Systems: A Numerical Analysis of Energetic Performances, Proceedings, ICAT '08 Conference, Istanbul, Turkey, 2008.
  41. Algieri, A., Amelio, M., Morrone, P., Energetic Analysis of the Performances of Innovative Aftertreatment Systems, Proceedings, SAE 2009 Powertrains, Fuels and Lubricants Meeting, Florence, Italy, SAE paper 2009-01-1948, 2009.
  42. Algieri, A., Morrone, P., The influence of the operating conditions on the performances of innovative aftertreatment systems, Proceedings, 12th European Automotive Congress - EAEC 2009, Bratislava, Slovakia, 2009.

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence