THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

CFD SIMULATION OF LENGTH TO DIAMETER RATIO EFFECTS ON THE ENERGY SEPARATION IN A VORTEX TUBE

ABSTRACT
The objective of the present computational fluid dynamics analysis is an attempt to investigate the effect of length to diameter ratio on the fluid flow characteristics and energy separation phenomenon inside the Ranque-Hilsch vortex tube. In this numerical study, performance of Ranque-Hilsch vortex tubes (RHVT), with length to diameter ratios (L/D) of 8, 9.3, 10.5, 20.2, 30.7 and 35 with six straight nozzles was investigated. It includes generating better understanding of the effects of the stagnation point location on the performance of RHVT. It was found that the best performance was obtained when the ratio of vortex tube length to the diameter was 9.3 and also fort this case the stagnation point was found to be the farthest from the inlet. The results show that the closer distance to the hot end is produced the larger magnitude of the temperature difference. Computed results show good agreement with published experimental results.
KEYWORDS
PAPER SUBMITTED: 2010-10-04
PAPER REVISED: 2010-11-22
PAPER ACCEPTED: 2010-12-24
DOI REFERENCE: https://doi.org/10.2298/TSCI101004008B
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2011, VOLUME 15, ISSUE Issue 3, PAGES [833 - 848]
REFERENCES
  1. Ranque, G.J., Experiences sur la détente giratoire avec simultanes d'un echappement d'air chaud et d'un enchappement d'air froid, J. Phys.Radium, 4 (1933), pp. 112-114
  2. Hilsch, R., Die expansion von gasen im zentrifugalfeld als kälteproze, Z. Naturforschung 1(1946), pp. 208-214
  3. Hartnett, J., Eckert, E., Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow, Trans. ASME, 79 (1957), pp. 751-758
  4. Ahlborn, B., Gordon, J., The vortex tube as a classical thermodynamic refrigeration cycle, J. Appl. Phys, 88 (2000), pp. 645-653
  5. Stephan, K., et al, An investigation of energy separation in a vortex tube, Int. J. Heat Mass Transfer, 26 (1983), pp. 341-348
  6. Kurosaka, M., Acoustic streaming in swirling flows, J. Fluid Mech., 124(1982), pp. 139-172 15
  7. 16
  8. Aljuwayhel, N.F.; G.F. Nellis; S.A. Klein, Parametric and internal study of the vortex tube using a CFD model, Int. J. Refrig., 28 (2005), pp. 442-450
  9. Skye, H.M., Nellis, G.F., Klein, S.A., Comparison of CFD analysis to empirical data in a commercial vortex tube. Int. J. Refrig., 29 (2006), pp. 71-80
  10. Gutsol, A.F., The ranque effect, Phys. Uspekhi, 40 (1997), pp. 639-658
  11. Behera, U., et al, CFD analysis and experimental investigations towards optimizing the parameters of ranque-hilsch vortex tube. Int. J. Heat Mass Transfer, 48 (2005), pp. 1961-1973
  12. Vortex tubes and spot cooling products, Exair Corporation, www.exair.com
  13. Chang, H.S., Experimental and Numerical Studies in a Vortex Tube, Journal of Mechanical Science and Technology, Vol 20, 3(2006), pp. 418-425
  14. Akhesmeh, Saeid., Pourmahmoud, Nader., Sedgi, Hasan., Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube, American Journal of Engineering and Applied Sciences, 3(2008), pp. 181-187
  15. Eisma., Promvonge, S., Numerical investigations of the thermal separation in a Ranque-Hilsch vortex tube. Int J Heat Mass Transfer , 50(2007), pp. 821-32
  16. Kirmaci Volkan, Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method, International Journal of Refrigeration, 32 (2009), pp.1487-1494
  17. Agrawal, A.B., Shrivastava, V., Retrofitting of vapour compression refrigeration trainer by an eco-friendly refrigerant, Indian J. Sci. Technol, Vol 3, 4(2010), pp. 455-458
  18. Jayaraman, B., Senthil Kumar, P., Design optimisation and performance analysis of orifice pulse tube cryogenic refrigerators, Indian J. Sci. Technol, Vol 3, 4(2010), pp.425-436
  19. Fulton CD., Ranque's tube. J Refrig Eng , 5(1950) , pp. 473-9
  20. Frohlingsdorf, W., Unger, H., Numerical investigations of the compressible flow and the energy separation in the ranque-hilsch vortex tube. Int. J. Heat Mass Transfer, 42(1999), pp.415-422
  21. Hossein Nezhad, A., Shamsoddini, R., NUMERICAL THREE-DIMENSIONAL ANALYSIS OF THE MECHANISM OF FLOW AND HEAT TRANSFER IN A VORTEX TUBE , THERMAL SCIENCE , Vol. 13 , No.4(2009), pp. 183-196

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence