THERMAL SCIENCE

International Scientific Journal

External Links

THERMAL MANAGEMENT OF ELECTRONICS: A REVIEW OF LITERATURE

ABSTRACT
Due to rapid growth in semiconductor technology, there is a continuous increase of the system power and the shrinkage of size. This resulted in inevitable challenges in the field of thermal management of electronics to maintain the desirable operating temperature. The present paper reviews the literature dealing with various aspects of cooling methods. Included are papers on experimental work on analyzing cooling technique and its stability, numerical modeling, natural convection, and advanced cooling methods. The issues of thermal management of electronics, development of new effective cooling schemes by using advanced materials and manufacturing methods are also enumerated in this paper. .
KEYWORDS
PAPER SUBMITTED: 2007-04-09
PAPER REVISED: 2007-07-11
PAPER ACCEPTED: 2007-10-16
DOI REFERENCE: https://doi.org/10.2298/TSCI0802005A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2008, VOLUME 12, ISSUE Issue 2, PAGES [5 - 26]
REFERENCES
  1. NEMI Technology Roadmaps, 2002
  2. The Uptime Institute, from the whitepaper entitled Heat Density Trends in Data Processing, Computer Systems and Telecommunication Equipment, www.uptimeinsitute.org.
  3. Kristiansen, H., Thermal Management in Electronics, Chalmers University of Technology, Göteborg, Sweden, 2001, http://www.ppd.chalmers.se/edu/mpr235/mpr235_thermgmnt.pdf
  4. Lasance, C. J. M., The Need for a Change in Thermal Design Philosophy, Electronics Cooling, 1 (1995), 2, pp. 24-26
  5. Scott, W. A., Cooling of Electronic Equipment, John Wiley and Sons - Interscience, New York, USA, 1974
  6. Cengel, Y. A., Heat Transfer - A Practical Approach, Tata McGraw-Hill, New Delhi, 2002
  7. Florio, L. A., Harnoy, A., Combination Techique for Improving Natural Convection Cooling in Electronics, Int. Journal of Thermal Sciences, 46 (2007), 11, pp.76-92
  8. Tso, C. P., Tou, K. W., Bhowmik, H., Experimental and Numerical Thermal Transient Behavior of Chips in a Liquid Channel During Loss of Pumping Power, Journal of Electronic Packaging, 126 (2004), 3, pp. 75-85
  9. Bhowmik, H., Tou, K. W., Experimantal Study of Transient Natural Convection Heat Transfer from Simulated Electronic Chips, Journal of Experimantal Thermal and Fluid Science, 29 (2005), 4, pp. 485-492
  10. Hamady, F. J., et al., A Study of Natural Convection in a Rotating Enclosure ASME J. of Heat Transfer, 116 (1994), 1, pp.136-143
  11. Tou, S. K., Zhang, W. X. F., Three-Dimensional Numerical Simulation of Natural Convection in an Inclined Liquid-Filled Enclosure with an Array of Discrete Heaters, Int. J. Heat Mass Transfer, 46 (2003), 1, pp. 127-138.
  12. Tso, C. P., et al., Flow Pattern Evolution in Natural Convection Cooling from an Array of Discrete Heat Sources in a Rectangular Cavity at Various Orientations, Int. J. Heat Mass Transfer, 47 (2004), 19-20, pp. 4061-4073
  13. Jin, L. F., Tou, K. W., Tso, C. P., Effects of Rotation on Natural Convection Cooling from Three Rows of Heat Sources in a Rectangular Cavity, Int. Journal of Heat and Mass Transfer, 48 (2005), 19-20, pp. 3982-3994
  14. Kercher, D. S., et al., Microjet Cooling Devices for Thermal Management of Electronics, IEEE Transactions on Components and Packaging Technologies, 26 (2003), 2, pp. 359-366
  15. Hong, J. H., Cao, J. I., Piezoelectric Ceramic Bimorph Coupled to Thin Metal Plate as Cooling Fan for Electronic Devices, Sensor Actuat. A. Phys., 79 (2000), 1, pp. 8-12
  16. Buermann, P., Raman, A., Garimella, S. V., Dynamics and Topology Optimization of Piezoelectric Fans. IEEE Transactions Components and Packaging Technologies, 25 (2003), 4, pp.113-121
  17. Acikalin,T., et al., Experimental Investigation of the Thermal Performance of Piezoelectric Fans, Heat Transfer Eng., 25 (2004), 1, pp. 4-14
  18. Wait, S. M., et al., Piezoelectric Fans for the Thermal Management of Electronics, Proceedings, 6th ISHMT/ASME Heat and Mass Transfer Conference, Kalpakkam, India, 2004, Paper No. HMT-2004-C76. pp. 447-452
  19. Acikalin, T., et al., Characterization and Optimization of the Thermal Performance of Miniature Piezoelectric Fans, Int. J. Heat and Fluid Flow, 28 (2007), 4, pp. 806-820
  20. Lee, S., Culham, J. R., Yovanovich, M. M., Effect of Common Design Parameters on the Thermal Performance of Micro Electric Equipment, Part 1 - Natural Convection, Heat Transfer in Electronic Equipment, HTD-Vol. 171, 1991, pp. 47-54
  21. Culham, J. R., Lee, S., Yovanovich, M. M., Thermal Modeling of Isothermal Cuboids and Rectangular Heat Sinks Cooled by Natural Convection, IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, 18 (1995), 3, pp. 559-566
  22. Van de Pol, D. W., Tierney, J. K., Free Convection Nusselt Number for U-Shaped Channels, J. of Heat Transfer, 95 (1973), 4, pp. 542-543
  23. Welling, J. R., Wooldridge, C. B., Free Convection heat Transfer Coefficients from Rectangular Vertical Fins, J. of Heat Transfer, 87 (1965), pp. 439-444
  24. Jones, C. D., Smith, L. F., Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free Convection Heat Transfer, J. Heat. Trans, 92 (1970), pp. 6-10
  25. Nottage, H. B., Efficiency of Extended Surface, Trans. of the ASME, 67 (1945), pp. 621-631
  26. Shvets, Y. I., Didenko, I. O., Calculation of Fins on Heat Transferring Surfaces Operating under Boundary Conditions of the Fourth Kind, Heat Trans.Sov.Res.,16 (1986), 2, pp. 224-226
  27. Garg, V. K., Velusamy, K., Heat Transfer Characteristics for a Plate Fin, I. Heat Trans., 108 (1986), 1, pp. 224-226
  28. Sparrow, E. M., Vemuri, S. B., Natural Convection Radiation Heat Transfer from Highly Populated Pin Fin Arrays, J. of Heat Transfer, 107 (1985), 1, pp. 190-197
  29. Sparrow, E. M., Vemuri, S. B., Orientation Effects on Natural Convection/ Radiation in Pin Fin Arrays, J. of Heat Transfer, 29 (1986), 3, pp. 359-368
  30. Zografos, A. I., Sunderland, J. E., Natural Convection from Pin Fin Arrays, Exp. Thermal fluid Sci., 3 (1990), pp. 440-449
  31. Zografos, A. I., Sunderland, J. E., Numerical Simulation of Natural Convection from Pin Fins Arrays, ASME, HTD-Vol. 157, 1990, pp. 55-66
  32. Aihara, T., Maruyama, S., Kobayakawa, S., Free Convection/Radiative Heat Transfer from Pin-Fin Arrays with a Vertical Base Plate, Int. J. Heat Mass transfer 33 (1990), 6, pp. 1223-1232
  33. Fisher, T. S., Torrance, K. E., Free Convection Limits for Pin Fin Cooling, HTD-Vol.343, Proceedings, 32nd National Heat Transfer Conference, Baltimore, Md., USA, 1997, Vol. 5, pp. 129-138
  34. Heindel, T. J., Incropera, F. P., Ramadhyani, S., Enhancement of Natural Convection Heat Transfer from an Array of Discrete Heat Sources, Int. J. Heat Mass Transfer, 39 (1996), 3, pp. 479-490
  35. Enchao, Y., Joshi, Y., Heat Transfer Enhancement from Enclosed Discrete Components Using Pin-Fin Heat Sinks, Int. J. Heat Mass Transfer, 45 (2002), pp. 4957-4966
  36. Knight, R. W., Goodling, J. S., Hall, D. J., Optimal Thermal Design of Forced Convection Heat Sinks - Analytical, J. of Electronic Packaging, 113 (1991), 9, pp. 313-321
  37. Teertstra., P., et al., Analytical Forced Convection Modeling of Plate Fin Heat Sinks, Proceedings, 15th Annual SEMI-THERM Symposium, San Diego, Cal., USA, 1999, pp. 34-41
  38. Copeland, D., Optimization of Parallel Plate Heat Sink for Forced Convection, Proceedings, 16th Annual SEMI-THERM Symposium, San Jose, Cal., USA, 2000, pp. 266-272
  39. Shah, R. K., London, A. L., Laminar Flow Forced Convection in Ducts, Academic press, New York, USA, 1978
  40. Culham, J. R., Muzychka, Y. S., Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization, IEEE Transaction on Components and Packaging Technologies, 24 (2001), 2, pp. 159-165
  41. Hilbert, C., et al., High Performance Micro-Channel Air Cooling, Proceedings, 6th IEEE Semiconductor Thermal and Temperature Measurement Symposium, Scottsdale, Ariz., USA, 1990, pp. 108-113
  42. Biskeborn, R. G., Horvath, J. L., Hultmark, E. B., Integral Cap Heat Sink Assembly for IBM 4381 Processor, Proceedings, International Electronics Packaging Conference, Baltimore, Md., USA, 1984, pp. 468-474
  43. Sparrow, E. M., Stryker, P. C., Altemani, A. C., Heat Transfer and Pressure Drop in Flow Passages that are Open Along Their Lateral Edges, Int. Journal of Heat Mass Transfer, 28 (1985), 4, pp. 731-740
  44. Butterbaugh, M. A., Kang, S. S., Effects of Air Flow Bypass on the Performance of Heat Sinks in Electronics Cooling, Advances in Electronics Packaging, 10 (1995), 2, pp. 843-848
  45. Shaukatullah, H., et al., Design and Optimization of Pin-Fin Heat Sinks for Low Velocity Applications, Proceedings, 12th Annual IEEE SEMI-THERM Symposium, Austin, Tex., USA, 1996, pp. 151-163
  46. Jonsson, H., Moshfegh, B., Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin and Pin Fin Heat Sinks-Influence of Flow By-Pass, IEEE Transactions on Components and Packaging Technologies, 24 (2001), 2, pp. 142-149
  47. Copeland, D., Manifold Micro Channel Heat Sinks: Numerical Analysis, ASME HTD-Vol. 319/EEP Vol. 15, Cooling and Thermal Design of Electronic Systems, ASME, 1995, pp. 111-116
  48. Kang, S. S., Holahan, M. F., Impingement Heat Sinks for Air Cooled High Power Electronic Modules, ASME HTD-Vol. 303, National Heat Transfer Conf., 1999, Vol. 1, pp.139-146
  49. Holahan, M. F., Kang, S. S., Bar-Cohen, A., A Flow Stream Based Analytical Model for Design of Parallel Plate Heat Sinks, Proceedings, 31st National Heat Transfer Conf., ASME HTD-Vol. 329, 1996, Vol. 7, pp. 63-71
  50. Kondo, Y., Matsuhima, H., Study of Impingement Cooling of Heat Sinks for LSI Packages with Longitudinal Fins, Heat Transfer - Japanese Research, 25 (1996), 8, pp. 537-553
  51. Sathe, S. B., et al., Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink, Journal of Electronic packaging, 119 (1997), 1,1997, pp. 58-63
  52. Biber, C. R., Pressure Drop and Heat Transfer in an Isothermal Channel with Impinging Flow, IEEE Transc. on Comp. and Packaging Tech., Part A, 20 (1997), 4, pp. 458-462
  53. Sasao, K., et al., Numerical Analysis of Impinging Air Flow and Heat Transfer in Plate Type Heat Sinks, Advances in Elec.Packaging, 26 (1999), 1, pp. 493-499
  54. Jonsson, H., Moshfegh, B., CFD Modeling of the Cooling Performance of Pin Fin Heat Sinks under Bypass Flow Conditions, Proceedings, IPACK, Kanai, Hawaii, USA, Paper No. 15674, 2001
  55. Biber, C. R., Belady, C. L., Pressure Drop Predictions for Heat Sinks: What is the Best Method? Proceedings, IPACK '97, 1997
  56. Dvinsky, A., Bar-Cohen, A., Strelets, M., Thermofluid Analysis Staggered and Inline Pin Fin Heat Sinks, Proceedings, 7th Inter Society Conference on Thermal Phenomena, Las Vegas, Nev., USA, 2000, pp. 157-164
  57. Kobus, C. J., Oshio, T., Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-Fin Array Heat Sink under Combined Forced and Natural Convection with Impinging Flow, Int. J. Heat Mass Transfer, 48 (2005), 6, pp. 1053-1063
  58. Bougriou, C., et al., Measurement of the Temperature Distribution on a Circular Plate Fin by Infrared Thermography Technique, Appl. Thermal Eng., 24 (2004), 5-6, pp. 813-825
  59. Yu, X., et al., Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink, Appl. Thermal Eng., 25 (2005), 2-3, pp. 173-182
  60. Ricci, R., Montelpare, S., An Experimental IR Thermographic Method for the Evaluation of the Heat Transfer Coefficient of Liquid-Cooled Short Pin Fins Arranged in Line, Journal of Experimental Thermal and Fluid Science, 30 (2006), 4, pp. 381-391
  61. Sahiti, N., Durst, F., Geremia, P., Selection and Optimization of Pin Cross-Sections for Electronics Cooling, Journal of Applied Thermal Engineering, 27 (2007), 1, pp. 111-119
  62. Shuja, S. Z., Optimal Fin Geometry Based on Exergoeconomic Analysis for a Pin-Fin Arry with Application to Electronics Cooling, Exergy, an International Journal, 2 (2002), 4, pp. 248-258
  63. Bar-Cohen, A., Elperin, T., Eliasi, R., Qjc Characterization of Chippackages Justification, Limitations, and Future, IEEE Transactions on Components Hybrids and Manufacturing Technology, 12 (1989), 4, pp. 724-731
  64. Krueger, W., Bar-Cohen, A., Thermal Characterization of PLCC-Expanded Rjc Methodology, IEEE Transactions on Components Hybrids and Manufacturing Technology, 15 (1992), 5, pp. 691-698
  65. Culham, J. R., Yovanovich, M. M., Lee, S., Thermal Modeling of Isothermal Cuboids and Rectangular Heat Sinks Cooled by Natural Convection, Concurrent Engineering and Thermal Phenomena, Proceedings, Intersociety Conference on Thermal Phenomena in Electronic Systems, IEEE Service Center, Paper 94CH3340, 1994
  66. Culham, J. R., Yovanovich, M. M., Lee, S., Thermal Modeling of Isothermal Cuboids and Rectangular Heat Sinks Cooled by Natural Convection, IEEE Transactions on Components Packaging and Manufacturing Technology, Part A, 18 (1995), 3, pp. 559-566
  67. Linton, R. L., Agonafer, D., Coarse and Detailed CFD Modeling of a Finned Heat Sink, IEEE Transactions on Components Packaging and Manufacturing Technology, Part A, 18 (1999), 3, pp. 517-520
  68. Butterbaugh, M. A., Kang, S. S., Effect of Air Flow Bypass on the Performance of Heat Sinks in Electronics Cooling, Advances in Electronic Packaging, 10 (1995), 2, pp. 843-848
  69. Visser, J. A., Gauche, P., A Computer Model to Simulate Heat Transfer in Heat Sinks, Proceedings, 4th International Conference for Advanced Computational Methods in Heat Transfer, Udine, Italy, 1996, pp. 105-114
  70. Patel, C. D., Belady, C. L., Modeling and Metrology in High Performance Heat Sink Design, IEEE Electronic Components and Technology Conference, IEEE 1997
  71. Patel, C. D., Belady, C. L., Modeling and Metrology in High Performance Heat Sink Design, Hewlett Packard Laboratories, Palo Alto, Cal., USA, 1997
  72. Kim, S., Lee, S., On Heat Sink Measurement and Characterization, ASME International Electronic Packaging Conference and Exhibition, ASME, paper INTERPACK'97, 1997
  73. Narasimhan, S., Kusha, B., Characterization and Verification of Component Heat Sink Models, Proceedings, Heat Transfer and Fluid Mechanics Institute, 1998, pp. 45-46
  74. Brucker, K., Ressler, K. T., Majdalani, J., Compact Thermal Conductivity of Common Heat Sinks Used in Free and Forced Convection Studies, 36th AIAA Thermophysics Conference, 2003, Orlando, Fla., USA, AIAA 2003-4189
  75. Zhao, C. Y., Lu, T. J., Analysis of Microchannel Heat Sinks for Electronics Cooling, Int. J. Heat and Mass Transfer, 45 (2002), 24, pp. 4857-4869
  76. Qu, W., Mudawar, I., Measurement and Prediction of Pressure Drop in Two- Phase Microchannel Haet Sink. Int. J. Heat and Mass Transfer, 46 (2003), 15, pp. 2737-2753
  77. Chen, T., Garimella, S. V., Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink, Proceedings, ASME/Pacific Rim Technical Conference and Exhibition on Integaration and Packaging of Micro, Nano, and Electronic Systems, InterPACJ'05, San Francisco, Cal., USA, 2005, pp. 17-22
  78. Chen, T., Garimella, S. V., Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink, Int. J. Multiphase Flow, 32 (2006), 8, pp. 957-971
  79. Chien-Hsin, Ch., Forced Convection Heat Transfer in Microchannel Heat Sinks, Int. J. Heat and Mass Transfer, 50 (2007), 11-12, pp. 2182-2189
  80. Arik, M., Bar-Cohen, A., Immersion Cooling of High Heat Flux Microelectronics with Dielectric Liquids, Proceedings, 4th International Symposium on Advanced Packaging Materials, Braselton, Geo., USA, 1998, pp. 229-247
  81. Bar-Cohen, A. E., Thermal Management of Electronic Components with Dielectric Liquids, JSME Int. J. 36 (1993), 1, pp. 1-25
  82. Bergles, A. E., The Challenge of Enhanced Heat Transfer with Phase Change, Heat and Technology, 7, (1997), 3-4, pp. 1-12
  83. Venart, J. E. S, Sousa, A. C., Jung, D. S., Nucleate and Film Boiling Heat Transfer in R-11: The Effects of Enhanced Surfaces and Inclination, Proceedings, 8th International Heat Transfer Conference, 1986, Vol. 4, pp. 2019-2024
  84. Bergles, A. E., Chyu, M. C., Characterstics of Nucleate Pool Boiling from Porous Metallic Coatings, J. Heat Transfer, 104 (1982), 2, pp. 279-285
  85. Hwang, U. P., Moran, K. F., Boling Heat Transfer of Silicon Integrated Circuits Chip Mounted on a Substrate, ASME HTD-Vol. 20, 1981, pp. 53-59
  86. Phadke, N. K., et al., Re-Entrant Cavity Surface Enhancement for Immersion Cooling of Silicon Multichip Packages, IEEE Trans. Comp. Hybrids, Manufact. Technol., 15 (1992), pp. 815-822
  87. Oktay, S., Departure from Natural Convection (DNC) in Low-Temperature Boiling Heat Transfer Encountered in Cooling Micro-Electronics LSI Devices, Proceedings, 7th International Heat Transfer Conference, 1982, Vol. 4, pp. 113-118
  88. Nowell, R. M., Bhavnani, S. H., Jaeger, R. C., Effect of Channel width on Pool Boiling from a Microconfigured Heat Sink, IEEE Trans. Comp. Hybrids, Manufact. Technol., 18 (1995), pp. 534-539
  89. Miller, W. J., Gebhart, B., Wright, N. T., Effects of Boiling History on a Micro-Configured Surface in a Dielectric Liquid, Int. Comm. Heat Mass Transfer, 17 (1990), pp. 389-398
  90. Honda, H., Wei, J. J., Takamatsu, H., Effect of Surface Microstructure on Boiling Heat Transfer from Silicon Chips Immersed in FC-72, Thermal Science and Engineering, 10 (2002), pp. 9-18
  91. Baldwin, C. S., Bhavani, S. H., Jaeger, R. C., Toward Optimizing Enhanced Surfaces for Passive Immersion Cooled Heat Sinks, IEEE Trans. Comp. Hybrids, Manufact. Technol., 23 (2000), pp. 70-79
  92. Kubo, H., Honda, H., Takamatsu, H., Effects of Size and Number Density of Micro-Reentrant Cavities on Boiling Heat Transfer from Silicon Chip Immersed in Degassed and Gas Dissolved FC-72, J. Enhanced Heat Transfer, 6 (1999), 2-4, pp. 151-160
  93. Nakayama, W., et al., Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part II: Analytical Modeling, Trans. ASME J. Heat Transfer Conf., 2 (1990), pp. 105-110
  94. You, S. M., Simon, T. W., Bar-Cohen, A., A Technique for Enhancing Boiling Heat Transfer with Application to Cooling of Electronic Equipment, IEEE Trans. Comp. Hybrids, Manufact. Technol., 15 (1992), pp. 90-96
  95. O'Connor, J. P., You, S. M., A Painting Technique to Enhance Boiling Heat Transfer in Saturated FC-72, Trans. ASME, J. Heat transfer, 117 (1995), 2, pp. 387-393
  96. O'Connor, J. P., You, S. M., Price, D. C., A Dielectric Coating Technique to Enhance Boiling Heat Transfer from High Power Microelectronics, IEEE Trans. Comp. Hybrids, Manufact. Technol., 18 (1995), pp. 656-663
  97. Chang, J. Y., You, S. M., Boiling Heat Transfer Phenomena from Micro Porous and Porous Surfaces in Saturated FC-72, Int. J. Heat Mass Transfer, 40 (1997), 18, pp. 4437-4447
  98. Chang, J. Y., You, S. M., Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72, ASME J. Heat Transfer, 118 (1996), 1, pp. 937-943
  99. Honda, H., Takamatsu, H., Wei, J. J., Enhanced Boiling of FC-72 on Silicon Chips with Micro-Pin-Fins and Submicron-Scale Roughness, Trans. ASME J. Heat Transfer, 124 (2002), 2, pp. 383-390
  100. Honda, H., Takamatsu, H., Wei, J. J., Effect of the Size of Micro-Pin-Fins on Boiling Heat Transfer from Silicon Chips Immersed in FC-72, Proceedings, 12th International Heat Transfer Conference, 2002, Vol. 4, pp. 75-80
  101. Wei, J. J., Honda, H., Effects of Fin Geometry on Boiling Heat Transfer from Silicon Chips with Micro-Pin-Fins Immersed in FC-72, Int. J. Heat Mass Transfer, 46 (2003), 21, pp. 4059-4070
  102. Anderson, T. M., Mudawar, I., Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid, Trans. ASME, J. Heat Transfer, 111 (1989), 3, pp. 752-759
  103. Nakayama, W., Nakajima, T., Hirasawa, S., Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling Microelectronic Components, ASME paper , 84-WA/HT-89, 1984
  104. Nakajima, T., et al., Critical Heat Loads in Boiling Heat Transfer from Porous Studs to Fluorinert Liquid, Trans. Jpn. Soc. Mech. Eng., 57 (1999), 539, B, pp. 279-288
  105. Ramaswamy, C., et al., Thermal Performance of a Compact Two-Phase Thermosyphon: Response to Evaporator Confinement and Transient Loads, J. Enhanced Heat Transfer, 6 (1999), 2-4, pp. 279-288
  106. Mudawar, I., Anderson, T. M., High Flux Electronic Cooling by Means of Pool Boiling, Part I: Parametric Investigation of the Effects of Coolant Variation, Pressurization, Subcooling and Surface Augmentation, ASME HTD-Vol. 111, 1989, pp. 25-34
  107. Mudawar, I., Anderson, T. M., High Flux Electronic Cooling by Means of Pool Boiling, Part II: Optimization of Enhanced Surface Geometry, ASME HTD-Vol. 111, 1989, pp. 35-49
  108. Raincy, K. N., You, S. M., Pool Boiling Heat Transfer from Plain and Microprous, Square Pin-Finned Surface in Saturated FC-72, Trans. ASME, J. Heat Transfer, 22 (2000), pp. 509-516
  109. Raincy, K. N., You, S. M., Lee, S., Effect of Pressure, Subcooling and Dissolved Gas on Pool Boiling Heat Transfer from Microprous, Square Pin-Finned Surface in Saturated FC-72, Int. J. Heat Mass Transfer, 46 (2003), pp. 23-35
  110. You, S. M., et al. A Technique for Enhancing Boiling Heat Transfer with Application to Cooling of Electronic Equipment, IEEE Trans. Comp. Hybrids, Manufact. Technol., 15 (1992), pp. 823-831
  111. Wolf, D., Incropera, F. P., Viskanta, R., Jet Impingement Boiling, Advances in Heat Transfer, 23 (1993), pp. 1-132
  112. Webb, B. W., Ma, C. F., Single Phase Liquid Jet Impingement Heat Transfer, Advances in Heat Transfer, 26 (1995), pp. 105-217
  113. Lienhard, J. H., Liquid Jet Impingement, Annual Review of Heat Transfer, 1995, pp. 199-270
  114. Garimella, S. V., Heat Transfer and Flow Fields in Confined Jet Impingement, Annual Review of Heat Transfer, 2000, pp. 413-449
  115. Jiji, L. J., Dagan, Z., Experimental Investigation of Single Phase Multijet Impingement Cooling of an Array of Microelectronic Heat Sources, Proceedings, International Symposium on Cooling Technology for Electronic Equipment (Ed. W. Aung), Hemisphere Publishing Corporation, Washington, D. C., USA, 1987, pp. 333-351
  116. Pan, Y., Webb, B. W., Heat Transfer Characteristics of Arrays of Free Surface Liquid Jets, ASME J. Heat Transfer, 117 (1995), 4, pp. 878-883
  117. Womac, D. J., Incorpera, F. P., Ramadhyani, S., Correlating Equations for Impingement Cooling of Small Heat Sources with Multiple Circular Liquid Jets, ASME J. Heat Transfer, 115 (1993), 1, pp. 106-115
  118. Oliphant, K., Webb, B. W., Mcquay, M. Q., An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime, Exp. Therm. Fluid. Sci., 18 (1998), pp. 1-10
  119. Fabbri, M., Dhir, V. K., Optimized Heat Transfer for High Power Electronics Cooling Using Array of Microjets, Journal of Heat Transfer, 127 (2005), 7, pp. 760-769
  120. Mudawar, I., Assessment of High-Heat Flux Thermal Management Schemes, Proceedings, 7th Intersociety Conference on Thermal Phenomena, Las Vegas, Nev., USA, 2000, Vol. 1
  121. Sehemby, M. S., et al., High Heat Flux Spray Cooling: A Review, in: Heat Transfer in High Heat Flux Systems (Eds. A. M. Khounsary, T. W. Simon, R. D. Boyd, A. J. Ghajar), HTD-Vol. 301, ASME Internatioanl Mechanical Engineering Congress and Exposition, Chicago, Ill., USA, 1994, pp. 39-46
  122. Apollonov, V. V., et al., Possibility of Using Structures with Open Pores in Construction of Cooled Laser Mirrors, Soviet Journal of Quantum Electronics, 8 (1978), 5, pp. 672-673
  123. Apollonov, V. V., et al., Prospects for the Use of Porous Structures for Cooling Power Optics Components, Soviet Journal of Quantum Electronics, 9 (1979), 12, pp. 1499-1505
  124. Apollonov, V. V., et al., The Promising Use of Some Heat Carriers in High Intensity Laser Optics, Proceedings, 12th Annual Symposium Laser Induced Damage in Optical Materials, Boulder, Cal., USA, 1980, pp. 328-338
  125. Zapevalov, V. E., et al., Development of High-Powered Gyrotrons at 140 GHz, Microwave Tube Journal, 1991
  126. Rosenfeld, J. H., et al., Test Results from a Pumped Single-Phase Porous Metal Heat Exchanger, Conference High Heat Flux Engineering II, San Diego, Cal., USA, Proceedings of SPIE, Vol. 997, 1993, pp. 53-64
  127. North, M. T., Rosenfeld, J. H., Youchison, D. L. Test Results from a Helium Gas-Cooled Porous Metal Heat Exchanger, Conference High Heat Flux Engineering III, Denver, Col., USA, Proceedings of SPIE, Vol. 2855, 1996, pp. 54-65
  128. Rosenfeld, J. H., North, M. T., Porous Media Heat Exchangers for Cooling of High-Power Optical Components, Optical Engineering, 34 (1995), 2, pp. 335-341
  129. Apollonov, V. V., et al., Intensification of Heat Transfer in High-Power Laser Diode Bars by Means of a Porous Metal Heat-Sink, Optics Express, 4 (1999), 1, pp. 27-32
  130. Apollonov, V. V., et al., Highly Efficient Heat Exchangers for Laser Diode Arrays, Conference Advanced High-Power Lasers, Osaka, Japan, Proceedings of SPIE, Vol. 3889, 2000, pp. 71-81
  131. Schmidt, R., Low Temperature Electronic Cooling, Electronics Cooling Magazine, 6 (2000), 3
  132. Peeples, J. W., Vapor Compression Cooling for High Performance Applications, Electronics Cooling Magazine, 7 (2001), 3
  133. Tahat, M. A., Ibrahim, G. A., Probert, S. D., Performance Instability of a Refrigerator with its Evaporator Controlled by a Thermostatic Expansion-Valve, Applied Energy, 70 (2001), 3, pp. 233-249
  134. Amit, K., et al., Effect of the Thermostatic Expansion Valve Characteristics on the Stability of a Refrigeration System - Part 1, Proceedings, 8th Intersociety Conference on Thermal and Thermomechanical Phenomena, San Diego, Cal., USA, 2002, pp. 403-407
  135. Agwu Nnanna, A. G., Application of Refrigeration System in Electronics Cooling, Applied Thermal Engineering, 26 (2006), 1, pp.18-27
  136. Choi, J., Jeon, J., Kim, Y., Cooling Performance of a Hybrid Refrigeration System Designed for Telecommunication Equipment Rooms, Applied Thermal Engineering, 27 (2007), 11-12, pp. 2026-2032
  137. Suman, S., Fedorov, A. G., Joshi, Y. K., Cryogenic/Sub Ambient Cooling of Electronics: Revisted, ITherm, Las Vegas, Nev., USA, 2004
  138. Kim, Y. J., Joshi, Y., Fedorov, A. G., An Adsorption Based Miniature Heat Pump System for Electronics Cooling, Int. Journal of Refrigeration, 31 (2007), 1, pp. 1-11
  139. Volklein, F., Blumers, M., Schmitt, L., Thermoelectric Microsensors and Micro Actuators (Mems) Fabricated by Thin Film Technology and Micromachining, Proceedings, 18th International Conference of Thermoelectrics, Baltimore, Md., USA, 1999, pp. 285-293
  140. Min, G., Row, D. M., Volklein, F., Integrated Thin Film Thermoelectric Cooler, Electronics Letters, 34 (1998), 2, pp. 222-223
  141. Miner, A., Majumdar, I., Ghoshal, U., Thermo-Electro-Mechanical Refrigeration Based on Transient Thermoelectric Effects, Applied Physics Letters, 75 (1999), pp. 1176-1178
  142. Marlow, R., Burke, E., Module Design and Fabrication, in: CRC Handbook of Thermoelectric, 1995, pp. 597-607
  143. Palacios, R., Vazquez, J., Sanz-Bobi, M. A., Cooling System for Hermetic Devices Based on Thermoelectricity, 6th European Workshop on Thermoelectrics, Freiburg, Germany, Proceedings, 2001
  144. Peterson, G. P., An Introduction to Heat Pipes (Modeling, Testing and Applications), John Wiley and Sons, Inc, New York, USA, 1984
  145. Peterson, G. P., Ortega, A., Advances in Heat Transfer, Academic Press, New York, USA, 1990
  146. Howard, A. H., Peterson, G. P., Investigation of a Heat Pipe Array for Convective Cooling, J. Electronic Packaging, 117 (1995), 9, pp. 208-214
  147. Groll, M., et al., Thermal Control of Electronic Equipments by Heat Pipes, Rev. Gen. Therm., 37 (1998), pp. 323-352
  148. Babin, D. R., Peterson, G. P., Experimental Investigation of a Flexible Bellows Heat Pipe for Cooling of Discrete Heat Sources, ASME J. Heat Trans. 112 (1990), 2, pp. 602-607
  149. Mochizuki, M., et al., Hinged Heat Pipes for Cooling Notebook PCs, IEEE 13th Annual SEMI-THERM Symposium, Phoenix, Ariz., USA, 1997, pp. 64-72
  150. Maziuk, V., et.al., Miniature Heat Pipe Thermal Performance Prediction Tool-Software Development, Applied Thermal Engineering, 21 (2001), 5, pp. 559-571
  151. Sugumar, D., Tio, K. K., Thermal Analysis of Inclined Micro Heat Pipes, Journal of Heat Transfer, 128 (2006), 2, pp.198-202
  152. Nguyen, T., et al., Advanced Cooling System Using Miniature Heat Pipes In Mobile PC, IEEE Trans. on Comp. and Packaging Technologies, 23 (2000), 1
  153. Vasiliev, L. L., Micro and Miniature Heat Pipes-Electronic Component Coolers, Applied Thermal Engineering, 28, (2008), 4, pp. 266-273
  154. Pastukhov, V. G., Maydanik, Y. F., Low-Noise Cooling System for PC on the Base of Loop Heat Pipes, Applied Thermal Engineering, 27 (2007), pp. 894-901
  155. Gernert, N. J., et.al., 100 W/cm2 and Higher Heat Flux Dissipation Using Heat Pipes, Proceedings, 13th International Heat Pipe Conference, 2004, pp. 256-262
  156. Ma, H. B. et.al. An Experimental Investigation of a High Flux Heat Sink Heat Pipe, J. of Electronic Packaging, 128 (2006), pp. 19-22
  157. Wang, J.-C. et.al., Experimental Investigation of Thermal Resistance of a Heat Sink with Horizontal Embedded Heat Pipes, Int. Comm. Heat and Mass Transfer, 34 (2007), 8, pp. 958-970
  158. Wirtz, R. A., Zheng, N., Chandra, D., Thermal Management Using Dry Phase Change Materials, Proccedings, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Diego, Cal., USA, 1999, pp. 74-82
  159. Fosset, A. J., et.al., Avionics Passive Cooling with Microencapsulated Phase Change Materials, Journal of Electronic Packaging, 120 (1998), 3, pp. 238-242
  160. Mulligan, J. C., Colvin, D. P., Bryant, Y. G., Use of Two-Component Fluids of Microencapsulated Phase-Change Materials for Heat Transfer in Spacecraft Thermal Systems, Proceedings, 6th AIAA/ASME Joint Thermo Physics and Heat Transfer Conference, Colorado Springs, Col., USA, 1994, pp. 1-10
  161. Pal, D., Joshi, Y. K., Transient Thermal Management of an Avionics Mobile Using Solid-Liquid Phase Change Materials (PCM's), Proceedings, 31st National Heat Transfer Conference, Houston, Tex., USA, ASME HTD-Vol. 329, Vol. 7, 1996, pp.145-155
  162. O'Connor, J. P., Weber, R. A. M., Thermal Management of Electronic Packages Using Solid-to-Liquid Phase Change Techniques, Int. J. of Microcircuits and Electronic Packaging, 20 (1997), pp. 593-601
  163. Bauer, C. A., Wirtz, R. A., Thermal Characteristics of a Compact, Passive Thermal Energy Storage Device, Proceedings, ASME International Mechanical Engineering Congress and Exposition, Orlando, Fla., USA, 2000, Paper 2-3-2-1
  164. Zheng, N., Wirtz, R. A., Methodology for Designing a Hybrid Thermal Energy Storage Heat Sinks, Proceedings, ASME International Mechanical Engineering Congress and Exposition, Orlando, Fla., USA, 2001, Paper 2-16-2-10
  165. Zheng, N., Wirtz, R. A., Figures of Merit for Hybrid Thermal Energy Storage Units, Proceedings, 2001 ASME National Heat Transfer Conference, Anaheim, Cal., USA, 2001, Paper No. T3-20027
  166. Hodes, M., et al., Transient Thermal Management of a Handset Using Phase Change Material (PCM), J. of Electronic Packaging, 124 (2002), pp. 419-426
  167. Gauche, P., Shidore, S., Thermal Performance Comparison of a Microprocessor Using Phase Change Materials in Various Configurations, Proceedings, International Conference on High-Density Interconnect and Systems Packaging, Denver, Col., USA, 2000
  168. Gurrum, S. P., Joshi, Y. K., Kim, J., Thermal Management of High Temperature Pulsed Electronics Using Phase Change Materials, Proceedings, 34th ASME National Heat Transfer Conference, Pittsburg, Penn., USA, 2000, Paper No. NHTC2000-12197
  169. Tan, F. L., Tso, C. P., Cooling of Mobile Electronics Devices Using Phase Change Materials, Applied Thermal Engineering, 24 (2004), 2/3, pp.159-169
  170. Marongiu, M. J., Clarksean, R., Thermal Management of Electronic Enclosure under Unsteady Heating/Cooling, Heat Transfer Conference, ASME HTD-Vol. 343, Vol. 5, 1997
  171. Kandasamy, R., Wang, X.-Q., Mujumdar, A. S., Transient Cooling of Electronics Using Phase Change Material (PCM) Based Heat Sinks, Applied Thermal Engineering, 27 (2007), pp. 1-11

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence