International Scientific Journal

Authors of this Paper

External Links


Performance-based design for passive building fire safety provisions is accepted by the authority in Hong Kong since 1998. This is also known as the "fire engineering approach", though the performance-based fire code is not yet available. To cope with the use of new building materials, appropriate flame spread tests on materials and components should be specified. After reviewing four standard tests in the literature, i.e. ASTM E1321-97a, BS476: Part 7: 1997, ASTM E84-99/NFPA 255, and ISO 9705: 1993(E), it appears that ISO 9705: 1993(E) is suitable for assessing the flame spread of materials. .
PAPER REVISED: 2006-09-10
PAPER ACCEPTED: 2006-10-10
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2007, VOLUME 11, ISSUE Issue 2, PAGES [101 - 118]
  1. Mudan, K. S., Croce, P. A., Fire Hazard Calculations for Large Open Hydrocarbon Fires, SFPE Handbook on Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, Ma., USA, 1988, pp. 2-45 to 2-87
  2. Mudan, K. S., Thermal Radiation Hazards from Hydrocarbon Pool Fires, Prog. Energy Combust. Sci., 10 (1984), 1, pp. 59-80
  3. Joulain, P., Behavior of Pool Fires: State of the Art and New Insights, Proceedings, 27th Symposium (Int.) on Combustion, 1998, The Combustion Institute, Pittsburgh, Pa., USA, 1999, pp. 2691-2706
  4. Gottuk, D. T., White, D. A., Liquid Fuel Fires, SFPE Handbook on Fire Protection Engineering, 3rd ed., National Fire Protection Association, Quincy, Ma., USA, 1995, pp. 2-297 to 2-316
  5. Wu, N., Baker, M., Kolb, G, Torero, J. L., Ignition, Flame Spread and Mass Burning Characteristics of Liquid Fuels on a Water Bed, Spill Science & Tech Bulletin, 3 (1996), 44, pp. 209-212
  6. Ross, H. D., Ignition of and Flame Spread Over Laboratory-Scale Pools of Pure Liquid Fuels, Prog. Energy Combust. Sci., 20 (1994), 1, pp. 17-63
  7. Koseki, J. A., Gritzo, L. A., Kent, L. A., Wix, S. D., Actively Cooled Calorimeter Measurements and Environment Characterization in a Large Pool Fire, Fire and Materials, 20 (1996), 2, pp. 69-78,
  8. Gritzo, L. A., Nicolette, V. F., Tieszen, S. R., Moya, J. L., Holen, J., Heat Transfer to the Fuel Surface in Large Pool Fires, Proceedings (Ed. S. C. Chan), 8th International Symposium Transport Phenomena in Combustion (ISTP-VIII), Taylor & Francis, Washington D. C., 1995, Vol. 1, pp. 701-712
  9. Drysdale, D. D., Introduction to Fire Dynamics, John Wiley and Sons, 2nd ed., New York, USA, 1999
  10. Zukoski, E. E., Properties of Fire Plumes, in: Combustion Fundamentals of Fire (Ed. G. Cox), Academic Press, Oxford, UK, 1995, pp. 101-220
  11. Quintiere, J. G., Grove, B. S., Unified Analysis for Fire Plumes, Proceedings, 27th Symposium (Int.) on Combustion, 1998, The Combustion Institute, Pittsburgh, Pa., USA, 1999, pp. 2757-2766
  12. Modak, A., Radiation from Products of Combustion, Tech. Rep. #040E6, BU-1, Factory Mutual Research Corp., Norwood, Ma., USA, 1978
  13. Hottel, H. C., Review - Certain Laws Governing Diffusive Burning of Liquids, by Blinov, V. I., Khudiakov, G. N., Fire Research Abstracts and Review, 1 (1958), pp. 41-44
  14. Nakakuki, A., Heat Transfer Mechanisms in Liquid Pool Fires, Fire Safety Journal, 23 (1994), 4, pp. 339-363
  15. Babrauskas, V., Estimating Large Pool Fire Burning Rates, Fire Technology, 19 (1983), 4, pp. 251-261
  16. Apte, V. B., Effect of Scale and Fuel Type on the Characteristics of Pool Fires for Fire Fighting Training, Fire Safety Journal, 31 (1998), 4, pp. 339-363
  17. Blinov, V. I., Khudzakov, G. N., Diffusion Burning of Liquids, U. S. Army Translation NTIS No. AD296762 (in Russian), Izdatel'stvo Akademii Nauk SSSR, Moscow, 1961
  18. Lois, E., Swithenbank, J., Fire Hazards in Oil Tank Arrays in a Wind, Proceedings, 17th Symposium (Int.) on Combustion, 1978, The Combustion Institute, Pittsburgh, Pa., USA, 1979, pp. 1087-1098
  19. Carvel, R. O., Beard, A. N., Jowitt. P. W., A Bayesian Estimation of the Effect of Forced Ventilation on a Pool Fire in a Tunnel, Civil Engineering and Environmental Systems, 18 (2001), 4, pp. 279-302
  20. Kurioka, H., Oka, Y., Satoh, H., Sugawa, O., Fire Properties in Near Field of Square Fire Source with Longitudinal Ventilation in Tunnels., Fire Safety Journal, 38 (2003), 4, pp. 319-340
  21. Apte, V. B., Green, A. R., Kent, J. H., Pool Fire Plume Flow in a Large-Scale Wind Tunnel, Proceedings, 3rd Symposium on Fire Safety Science, Edinburgh, UK, 1991, pp. 425-434
  22. Carvel, R., Beard, A., Jowitt, P., Fire Spread Between Vehicles in Tunnels: Effects of Tunnel Size, Longitudinal Ventilation and Vehicle Spacing, Fire Technology, 41 (2005), 4, pp. 271-304
  23. Hall, A. R., Pool Burning: A Review, Rocket Propulsion Establishment, Westcott, UK, 1972
  24. Orloff, L., Simplified Radiation Modeling of Pool Fires, Proceedings, 18th Symposium (Int.) on Combustion, 1980, The Combustion Institute, Pittsburgh, Pa., USA, 1981, pp. 549-561
  25. Magnus, G., Tests on Combustion Velocity of Liquid Fuels and Temperature Distribution in Flames and Beneath Surface of the Burning Liquid, Proceedings, 8th International Symposium on the Use of Models in Fire Research, Washington D. C., 1960, pp. 76-92
  26. Burgoyne, J. H., Katan, L. L., Fires in Open Tanks of Petroleum Products: Some Fundamental Aspects, Journal Inst. Petroleum, 33 (1947), 1, pp. 158-191
  27. Garo, J. P., Vantelon, J. P., Koseki, H., Thin-Layer Boilover: Prediction of its Onset and Intensity, Combust. Sci. Technol., 178 (2006), 7, pp. 1217-1235
  28. Hristov, J., Planas-Cuchi, E., Arnaldos, J., Casal, J., Accidental Burning of a Fuel Layer on a Waterbed: A Scale Analysis of the Models Predicting the Pre-Boilover Time and Tests to Published Data, Int. J. Thermal Sciences, 43 (2004), 3, pp. 221-239
  29. Pagni, P. J., Pool Fire Vortex Shedding Frequencies, in: Some Unanswered Questions in Fluid Mechanics (Eds. L. M. Trefethen, R. L. Panton), Appl. Mech. Rev., 43 (1990), 8, pp. 153-170
  30. Malalasekera, W. M. G., Versteeg, H. K., Gilchrist, K., A Review of Research and an Experimental Study on the Pulsation of Buoyant Diffusion Flames and Pool Fires, Fire and Materials, 20 (1996), 6, pp. 261-271
  31. Torero, J. L., Olenick, S. M., Garo, J. P., Vantelon, J. P., Determination of the Burning Characteristics of a Slick of Oil on Water, Spill Science and Tech. Bulletin, 8 (2003), 4, pp. 379-390
  32. Faeth, G. M., Laminar and Turbulent Gaseous Diffusion Flames, in: Microgravity Combustion: Fire in Free Fall (Ed. H. D. Ross), Academic Press, Oxford, UK, 2001
  33. Köylü, Ü. Ö., Faeth, G. M., Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at long residence times, Combust. Flame, 89 (1992), 2, pp. 140-156
  34. Köylü, Ü. Ö., Faeth, G. M., Farias, T. L., Carvalho, M. G., Fractal and Projected Structure Properties of Soot Aggregates, Combust. Flame, 100 (1995), 4, pp. 621-633
  35. Gore, J. P., Faeth, G. M., Structure and Radiation Properties of Luminous Turbulent Acetylene/Air Diffusion Flames, J. Heat Transfer, 110 (1998), 1, pp. 173-181
  36. Leung, K. M., Lindstedt, R. P., Jones, W. P., A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames, Combust. Flame, 87 (1991), 3-4, pp. 289-305
  37. Moss, J. B., Stewart, C. D., Flamelet-Based Smoke Properties for the Field Modelling of Fires, Fire Safety J., 30 (1998), 3, pp. 229-250

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence