THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

A fractal model for the crystallization kinetics

ABSTRACT
The Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation is wildly applied in the crystallization kinetics, and Avrami exponent involved in the equation plays an important role in crystallization process. Here we show that the KJMA equation can be obtained by a fractal crystallization model, and the exponent is explained as the fractal dimension in time, which depends upon the chain length and molecule weight.
KEYWORDS
PAPER SUBMITTED: 1970-01-01
PAPER REVISED: 2020-06-12
PAPER ACCEPTED: 2020-06-16
PUBLISHED ONLINE: 2021-01-31
DOI REFERENCE: https://doi.org/10.2298/TSCI191212027W
REFERENCES
  1. D. Tian, X.X. Li, J.H. He. Self-assembly of macromolecules in a long and narrow tube, Therm. Sci., 22(4)(2018), pp.1659-1664
  2. D. Tian, C.H. He, J.H. He. Macromolecule Orientation in Nanofibers, Nanomaterials, 8(11)(2018), Article Number:918
  3. D. Tian, J.H. He. Macromolecular electrospinning: Basic concept & preliminary experiment, Results in Physics, 11(2018), pp. 740-742
  4. D.Tian, X.X. Li, J.H. He. Geometrical potential and nanofiber membrane's highly selective adsorption property, Adsorption Science & Technology, 37(5-6)(2019), pp.367-388
  5. X. Jin, M.Liu, F. Pan, et al. Low frequency of a deforming capillary vibration, part 1: Mathematical model, Journal of Low Frequency Noise Vibration and Active Control, 38(3-4)(2019), 1676-1680
  6. Z. Yang, F. Dou, T. Yu, et al. On the cross-section of shaped fibers in the dry spinning process: Physical explanation by the geometric potential theory, Results in Physics, 14(2019), Article Number: 102347
  7. X.X. Li, J.H. He, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning, Results in Physics, 12(2019), pp. 1405-1410
  8. A.N. Kolmogorov. On the statistical theory of crystallization of metals, Ivz. Akad. Nauk. SSSR, Ser. Mat., 3 (1937), pp. 355-359
  9. W.A. Johnson, R.F. Mehl. Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. (Metall.) Engs, 135 (1939), pp. 416-442
  10. M.J. Avrami. Kinetics of phase change. I General theory, Phys. Chem., 7 (1939), pp. 1103-1112
  11. A. A. Elabbar. On the application of the KJMA equation on the analysis of isothermal crystallization kinetics, Materials Chemistry and Physics, 238(2019), December, Article Number 121896
  12. O. Yousefzade, J. Jeddi, L. Franco, et al., Crystallization kinetics of chain extended poly(L-lactide)s having different molecular structures, Materials Chemistry and Physics, 240(2020), Article 122217
  13. N. Hassanzadeh, S. K. Sadrnezhaad, M. Ghorbanzadeh. An investigation of crystallization kinetics of the Na3MnCO3PO4 cathode material, synthesized by the hydrothermal method, Materials Chemistry and Physics, 214(2018),pp.73-79
  14. Q.T. Ain, J.H. He. On two-scale dimension and its applications, Thermal Science, 23(3B) (2019): 1707-1712 doi.org/10.2298/TSCI190408138A
  15. J.H. He, F.Y. Ji. Two-scale mathematics and fractional calculus for thermodynamics, Therm. Sci., 23(4)(2019) 2131-2133 DOI: 10.2298/TSCI1904131H
  16. J.H. He. Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272-276.
  17. C.H. He, Y. Shen, F.Y. Ji, et al.Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(2020), 1 , Article Number: 2050011
  18. J.H. He. The simplest approach to nonlinear oscillators, Results in Physics, 15(2019): 102546, DOI: 10.1016/j.rinp.2019.102546
  19. J.H. He. A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes, Journal of Electroanalytical Chemistry, 854(2019), Article Number: 113565 DOI: 10.1016/j.jelechem.2019.113565
  20. J.H. He. A fractal variational theory for one-dimensional compressible flow in a microgravity space,, Fractals, 28(2020), article number: 2050024
  21. J.H. He. Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves,, J. Appl. Comput. Mech., 6 (2020), 4, 735-740
  22. H. Y. Liu, S.W. Yao, H.W. Yang, J. Liu, A fractal rate model for adsorption kinetics at solid/solution interface, Therm. Sci., 23 (2019),4, pp. 2477-2480.
  23. K. L. Wang and C.H. He. A remark on Wang's fractal variational principle, Fractals , 27(2019), 8, Article number: 1950134
  24. Q.L. Wang, X.Y. Shi, Z.B. Li, et al. Fractal calculus and its application to explanation of biomechanism of polar bear hairs, Fractals, 27(2019) ,5, 1992001.
  25. Y. Wang and Q.G. Deng. Deng, Fractal derivative model for tsunami travelling, Fractals, 27(2019), 1, 1950017.
  26. Y.Wang, J.Y.An , X.Q.Wang. A variational formulation for anisotropic wave traveling in a porous medium, Fractals 27(2019), 4, 19500476
  27. Y. Wang, S.W.Yao and H.W.Yang. Yang, A fractal derivative model for snow's thermal insulation property, Therm. Sci., 23(2019), 4, pp. 2351-2354.
  28. L. Nottale. On time in microphysics, Comptes Rendus de L. Acad Sci, Ser II 306(5)(1988):341-346.