International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Preparation of different scale firous membranes and their filtration properties

In this work, the PAN monolayer/composite nanofibrous membranes were successfully fabricated at different processing parameters. As expected, compared with monolayer membranes, the composite membrane revealed high breaking strength, high breaking elongation, high porosity and good filtration performance. The composite method used in this article also provides new ideas for designing filter materials.
PAPER REVISED: 2020-04-16
PAPER ACCEPTED: 2020-05-06
  1. Horton, D. E., et al. Occurrence and persistence of future atmospheric stagnation events, Clim. Change, 4 (2014), 8, pp. 698−703
  2. Li, H.C., et al. Particulate matter exposure and stress hormone levels, Circulation, 136 (2017), 7, pp. 618-649
  3. Hoek, G., et al. Long-term air pollution exposure and cardio- respiratory mortality: a review, Environ. Health, 12 (2013), DOI:10.1186/1476-069X-12-43
  4. Zhang, R. F., et al., Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources, Nano Lett., 16 (2016), 6, pp. 3642-3649
  5. Zhang, Y. Y., et al., Preparation of nanofibrous metal-organic framework filters for efficient air pollution control, J. Am. Chem. Soc., 138 (2016), 18, pp. 5785-5788
  6. Zhang, B. A., et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci., 76 (2016), pp. 319-380
  7. Matulevicius, J., et al., The comparative study of aerosol filtration by electrospun polyamide, polyvinylacetate, polyacrylonitrile and cellulose acetate nanofiber media. J. Aerosol Sci., 92 (2016), pp. 27-37
  8. Lv, D., et al., Ecofriendly electrospun membranes loaded with visible-light responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity, ACS Appl. Mater. Interfaces, 11 (2019), 13, pp. 12880−12889
  9. Huang, X. X., et al., Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high efficiency PM2.5 capture, Sci. China Mater., 62 (2019), 3, pp. 423-436
  10. Al-Attabi, R., et al. High efficiency Poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration, Adv. Eng. Mater., 20 (2018), 1, pp. 1700572
  11. Al-Attabi, R., et al. Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal, Sci. Total Environ., 625 (2018), pp. 706-715
  12. Canalli, B. A. C., Composites based on nanoparticle and pan electrospun nanofiber membranes for air filtration and bacterial removal, Nanomaterials, 9 (2019), 12, pp. 1739-1742
  13. Chen, K. N., et al., Multifunctional TiO2/polyacrylonitrile nanofibers for high efficiency PM2.5 capture, UV filter, and anti-bacteria activity, Appl. Surf. Sci., 493 (2019), pp. 157-164
  14. Yin, J., et al. Numerical approach to high-throughput of nanofibers by a modified bubble-electrospinning, Thermal Science, 24(2020), 4, pp.2367-2375
  15. Ahmed, A. and Xu, L. Numerical analysis of the electrospinning process for fabrication of composite fibers, Thermal Science, 24(2020), 4, pp.2377-238
  16. Li, X.X., et al. Nanofibers membrane for detecting heavy metal ions, Thermal Science, 24(2020), 4, pp.2463-2468
  17. Li XX, et al. The effect of sonic vibration on electrospun fiber mats, Journal of Low Frequency Noise Vibration and Active Control, 38(2019),3-4, pp. 1251-1246
  18. Zhao JH, Li XX, Liu Z. Needle's vibration in needle-disk electrospinning process: Theoretical model and experimental verification, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. 1344-1338
  19. Wu, Y.K. & Liu, Y. Fractal-like multiple jets in electrospinning process, Thermal Science, 24(2020), 4, pp.2499-2505
  20. He JH. Advances in Bubble Electrospinning, Recent Patents on Nanotechnology, 13(2019), 3, pp.162 -163
  21. Yao, X. and He, J.H. On fabrication of nanoscale non-smooth fibers with high geometric potential and nanoparticle's non-linear vibration, Thermal Science, 2020 24(4):2491-2497
  22. Yang ZP, Zhang L, Dou F, et al. A fractal model for pressure drop through a cigarette filter, Thermal Science, 2020 24(4):2653-2659
  23. Li, X.X. & He, J.H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning,,Results in Physics, 12(2019), March, pp. 1410-1405
  24. He, J.H., Liu, Y.P. Bubble Electrospinning: Patents, Promises and Challenges. Recent Patents on Nanotechnology, 14(2020), 1, pp. 3-4
  25. He,C.H., et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(2020), 1, 2050011
  26. He, J.H. On the height of Taylor cone in electrospinning, Results in Physics, 17(2020), June, Article number 103096