THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

The extended variational iteration method for local fractional differential equation

ABSTRACT
An extended variational iteration method within the local fractional derivative is introduced for the first time., where two Lagrange multipliers are adopted. Moreover, the sufficient conditions for convergence of the new variational iteration method are also established..
KEYWORDS
PAPER SUBMITTED: 2020-02-01
PAPER REVISED: 2020-06-20
PAPER ACCEPTED: 2020-06-20
PUBLISHED ONLINE: 2021-01-31
DOI REFERENCE: https://doi.org/10.2298/TSCI200201054Y
REFERENCES
  1. He J.H., A Tutorial Review on Fractal Space time and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718.
  2. Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Bear Hairs, Fractals, 26 (2018), 6, ID 1850086.
  3. Abdon A., Dumitru B.,Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer, Journal of Engineering Mechanics, 143 (2017), 5, pp. 1-5.
  4. Liu, F.J., et al. Silkworm(Bombyx Mori) cocoon vs wild cocoon: Multi-Layer Structure and Performance Characterization, Thermal Science, 23(2019), 4, pp. 2142-2135
  5. Wang, Y., et al. A fractal derivative model for snow's thermal insulation property, Thermal Science, 23(2019), 4, pp.2351-2354
  6. Liu, H.Y., et al. A fractal rate model for adsorption kinetics at solid/solution interface, Thermal Science, 23(2019), 4, pp. 2477-2480
  7. Wang, Q.L., et al. Fractal calculus and its application to explanation of biomechanism of polar hairs (vol 26, 1850086, 2018), Fractals, 27(2019), 5, Article Number: 1992001
  8. Wang, Q.L., et al. Fractal calculus and its application to explanation of biomechanism of polar hairs (vol 26, 1850086, 2018), Fractals, 26(2018), 6, Article Number: 1850086
  9. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28(2020), 2, Article Number:2050024
  10. He, J.H., A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes, Journal of Electroanalytical Chemistry, 854(2019), Article Number: 113565
  11. He, J.H., Ain, Q.T. New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle, Thermal Science, 24(2020), 2A, pp. 659-681
  12. Ain, Q.T., He, J.H. On two-scale dimension and its application, Thermal Science, 23(2019), 3B, pp. 1712-1707
  13. He, J.H., Ji, F.Y. Two-scale mathematics and fractional calculus for thermodynamics, Therm. Sci., 23(2019), 4, pp. 2131-2133
  14. Yang X.J., Advanced local Fractional Calculus and its Applications, New York: World Science Publisher, 2012.
  15. Yang X.J., Baleanu D., Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method, Therm Sci , 17(2013), pp.625-628.
  16. He J.H., A Short Remark on Fractional Variational Iteration Method. Phys Lett A, 375(2011), pp.3362-3364.
  17. Yang Y.J., et al.,,A Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional Operators, Abstract and Applied Analysis, 2013(2013),ID 202650, pp.1-6.
  18. Yang, Y.J. The fractional residual method for solving the local fractional differential equations, Thermal Science, 24(2020), 4, pp.2535-2542
  19. Yang, Y.J. The local fractional variational iteration method a promising technology for fractional calculus, Thermal Science, 24(2020), 4, pp.2605-2614
  20. Yang, Y.J. & Wang, S.-Q. An improved homotopy perturbation method for solving local fractional nonlinear oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. 927-918
  21. He J.H., Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media, Comput Meth Appl Mech Eng, 167 (1998), pp. 57-68.
  22. Wu G.C., Lee E.M.M., Fractional Variational Iteration Method and its Application, Phys Lett A ; 374 (2010), pp. 2506-2509.
  23. Wu G.C.,Baleanu D., Variational Iteration Method for the Burgers' flow with Fractional Derivatives - New Lagrange Multipliers, Appl Math Model, 37(2013), pp.6183-6190.
  24. Goswami P., Solutions of Fractional Differential Equations by Sumudu Transform and Variational Iteration Method, Journal of Nonlinear Science & Applications, 9(2016), 4, pp.1944-1951.
  25. Yang Y.J., A New Method Solving Local Fractional Differential Equations in Heat Transfer, Therm Sci , 23(2019), 3A, pp. 1663-1669.
  26. Tao, Z. L., et al. Variational iteration method with matrix Lagrange multiplier for nonlinear oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. -984991
  27. Ahmad, H., et al. Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. 1124-1113
  28. He, W., et al. Modified variational iteration method for analytical solutions of nonlinear oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38(2019), 3-4, pp. 1183-1178
  29. He, J.H., Latifizadeh, H. A general numerical algorithm for nonlinear differential equations by the variational iteration method, International Journal of Numerical Methods for Heat and Fluid Flow, 2020, DOI :10.1108/HFF-01-2020-0029
  30. Anjum, N., He, J.H. Laplace transform: Making the variational iteration method easier, Applied Mathematics Letters, 92(2019), Jun., pp. 134-138
  31. He, J.H., Jin, X., A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Mathematical Methods in the Applied Sciences, 2020, Article DOI: 10.1002/mma.6321 ,dx.doi.org/10.1002/mma.6321
  32. He, J.H., The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, Journal of Low Frequency Noise Vibration and Active Control, (38) 2019: pp.1252-1260
  33. He, J.H. A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives, International Journal of Numerical Methods for Heat and Fluid Flow, 2020, DOI (10.1108/HFF-01-2020-0060)