International Scientific Journal

Thermal Science - Online First

online first only

Analytical determination and validation by finite elements method of hydrogen weld of carbon steel after post-heating

The objective of this work is to determine analytically the amount of hydrogen residual in a weld after having carried out post-heating for a certain period of time in order to reduce the risk of cold cracking due to the presence of hydrogen in the weld and its validation by the finite element method. Post-heating is a variable present in the welding procedures and therefore it is mandatory in those welds that require it. This work can be helpful to determine both numerically by the finite element method and analytically the post-heating suitable in a welding process depending on that process, the welded material and the base material. In this work, the phase transformation and time difference of the phase transformation between the weld metal and base metal are not considered. The diffusivity values are those used by the reference method that analytically calculates the residual hydrogen in a carbon steel weld. There are two values of hydrogen diffusivity (minimum value and maximum value) in this way the diffusivity values that represent all types of carbon steel are collected. The least amount of hydrogen in the weld is with a post-heating to 200ºC, producing a decrease in hydrogen in the weld at a higher speed than with the rest of temperatures below this.
PAPER REVISED: 2020-09-10
PAPER ACCEPTED: 2020-09-17
  1. ***, BS EN 1011-2: 2001:‘Welding: Recommendations For Welding Of Metallic Materials. - Part 2: Arc Welding Of Ferritic Steels,' British Standards Institution, (2001)
  2. McEvily, A., Le May, I., Hydrogen-Assisted Cracking, Materials Characterization, 26 (1991), 4, pp. 253-268
  3. M.J.Cieslak, Hydrogen-Induced Cracking (Cold Cracking), 1990
  4. Tomków, J., et al., Efecto Del Sistema De Apantallamiento De La Soldadura Y El Tiempo De Almacenaje De Los Electrodos En El Contenido De Hidrógeno Difundido En El Metal Depositado, Revista de Metalurgia, 55 (2019), 1, pp. 140
  5. Réquiz, R., et al., Estudio Del Daño Por Hidrógeno En Uniones Soldadas De Un Acero API 5L X52, Revista de metalurgia, 44 (2008), 2, pp. 101-112
  6. Fydrych, D., \Labanowski, J., Estudio Experimental De Procesos De Soldadura Con Alto Contenido En Hidrógeno, Revista de Metalurgia, 51 (2015), 4, pp. 055
  7. Drǎgoi, F., et al., Investigaciones Sobre La Influencia De La Escoria Sobre El Rendimiento De Eliminación Del Hidrógeno, Revista de Metalurgia, 47 (2011), 6, pp. 477-487
  8. Albístur-Goñi, A., Fernández-Carrasquilla, J., Análisis De La Absorción De Hidrógeno Y De Su Influencia En El Comportamiento Mecánico De Cinco Aleaciones Férreas, Revista de metalurgia, 44 (2008), 2, pp. 113-128
  9. Linnert, G.E., Welding Metallurgy-Carbon And Alloy Steels; Volume 1: Fundamentals, New York, NY, American Welding Society (AWS), 1965
  10. Kumar, P.G., Yu-ichi, K., Diffusible Hydrogen In Steel Weldments, Trans JWRI, 42 (2013), pp. 39-62
  11. Grant, N., Lunsford, J., HOW IMPORTANT IS HYDROGEN EMBRITTLEMENT IN COLD-WORKED MILD STEEL, Massachusetts Inst. of Tech., Cambridge, 1955
  12. Ito, Y., Cracking Parameter Of High Strength Steels Related To Heat Affected Zone Carcking, J. JWS, 37 (1968), 9, pp. 983-991
  13. Suzuki, H., Cold Cracking And Its Prevention In Steel Welding, Transactions of the Japan Welding Society, 9 (1978), 2, pp. 140-149
  14. SATOH, K., et al., JSSC Guidance Report On Determination Of Safe Preheating Conditions Without Weld Cracks In Steel Structures, Transactions of JWRI, 2 (1973), 2, pp. 246-255
  15. Yurioka, N., Comparison Of Preheat Predictive Methods, Welding in the World, 48 (2004), 1-2, pp. 21-27
  16. Yurioka, N., Suzuki, H., Determination Of Necessary Preheating Temperature In Steel Welding, (1983)
  17. AWS, A., D1. 1/D1. 1M-Structural Welding Code-Steel, American Welding Society, (2006)
  18. Welding, I., Allied Processes—Determination Of Hydrogen Content In Arc Weld Metal, ISO, 3690 (2012), pp. 2012
  19. Lasseigne, A., et al., Advanced non-contact diffusible hydrogen sensors for steel weldments, Proceedings, Trends in Welding Research: Proceedings of the 8th International Conference, 2009, pp. 424-429
  20. Kyte, W., Chew, B., Post Weld Heat Treatment For Hydrogen Removal, Welding Journal, 58 (1979), 2, pp. S54-S58
  21. Bailey, N., et al., Welding Steels Without Hydrogen Cracking, Woodhead Publishing, 1993
  22. Gedeon, S.A., Hydrogen assisted cracking of high strength steel welds, ARMY LAB COMMAND WATERTOWN MA MATERIALS TECHNOLOGY LAB, 1988
  23. Olden, V., et al., Modelling Of Hydrogen Diffusion And Hydrogen Induced Cracking In Supermartensitic And Duplex Stainless Steels, Materials & design, 29 (2008), 10, pp. 1934-1948
  24. Mente, T., et al., Heat Treatment Effects On The Reduction Of Hydrogen In Multi-Layer High-Strength Weld Joints, Welding in the World, 56 (2012), 7-8, pp. 26-36
  25. Lindgren, L.-E., Numerical Modelling Of Welding, Computer methods in applied mechanics and engineering, 195 (2006), 48-49, pp. 6710-6736
  26. Wongpanya, P., et al., Numerical Simulation Of Hydrogen Removal Heat Treatment Procedures In High Strength Steel Welds, (2007)
  27. Boellinghaus, T., et al., A Scatterband For Hydrogen Diffusion Coefficients In Microalloyed And Low Carbon Structural Steels, Welding in the World/Le Soudage dans le Monde, 2 (1995), 35, pp. 149
  28. Boellinghaus, T., et al., Scatterbands For Hydrogen Diffusion Coefficients In Steels Having A Ferritic Or Martensitic Microstructure And Steels Having An Austenitic Microstructure At Room Temperature, Welding in the World/Le Soudage dans le Monde, 1 (1996), 37, pp. 16-23
  29. Standard, A., Standard Practice For Evaluation Of Hydrogen Uptake, Permeation, And Transport In Metals By An Electrochemical Technique, Standard, ASTM, (2011), pp. 625-634
  30. Feng, Z., et al., Permeation, diffusion, solubility measurements: results and issues, Proceedings, Presentation at DOE Hydrogen Pipeline Working Group Workshop, 2007, pp. 25-26