International Scientific Journal

Thermal Science - Online First

online first only

Analysis of temperature variations in fixed-bed columns using non-isothermal and non-equilibrium transport model

A non-isothermal and non-equilibrium two-component lumped kinetic model (LKM) of fixed-bed column liquid chromatography is formulated with the linearized isotherm and solved analytically to study the influence of temperature variations on the process. The model equations constitute a system of convection-diffusion partial differential equations for mass and energy balances in the bulk phase coupled with differential equations for mass and energy balances in the stationary phase. The analytical solutions are derived for Dirichlet boundary conditions by implementing the Laplace transformation, Tschirnhaus-Vieta approach, the linear decomposition technique and an elementary solution technique of ordinary differential equations. An efficient and accurate numerical Laplace inversion technique is applied to bring back the solution in the actual time domain. In order to validate the derived analytical solutions for concentration and temperature fronts, the high-resolution upwind finite volume scheme is applied to approximate the model equations numerically. Various case studies are carried out assuming realistic model parameters. The results obtained will be beneficial for interpreting mass and energy profiles in non-equilibrium and non-isothermal liquid chromatographic columns and provide deeper insight into the sensitivity of the separation process without performing costly and time-consuming laboratory experiments.
PAPER REVISED: 2020-05-05
PAPER ACCEPTED: 2020-05-08
  1. Guiochon, G., Preparative liquid chromatography, J. Chromatogr. A ., 965 (2002), pp. 129-161.
  2. Guiochon, G., Lin, B., Modeling for preparative chromatography, Academic Press., Amsterdam, 2003.
  3. Dunlap, C. J., McNeff, C. V., Stoll., D., Carr., P. W., Zirconia stationary phases for extreme separations. Anal. Chem., 73 (2001), pp. 598A-607A.
  4. T. Greibrokk., Subcritical water chromatography: A green approach to high-temperature liquid chromatography, Anal. Chem., 74 (2002), pp. 375A-378A.
  5. Greibrokk, T., Andersen, T., 2003. High temperature liquid chromatography. J. Chromatogr. A., 1000 (2003), pp. 743-755.
  6. Smith, R. M., Burgess, R. J., Superheated water as an eluent for reversed-phase high-performance liquid chromatography, J. Chromatogr. A., 785 (1997), pp. 49-55.
  7. Teutenberg, T., Lerch, O., Gotze, H. J., Zinn, P., Separation of selected anticancer drugs using superheated water as the mobile phase, Anal. chem., 73(2001), pp. 3896-3899.
  8. Genowefa, H., Jerzy, S.,K., The effect of temperature on the efficiency parameters in adsorptive liquid chromatography, JHRC, 4 (1981), pp. 27-32.
  9. Cerro, R. L., Smith, J. M., Effects of heat release and nonlinear equilibrium on transient adsorption, Ind. Eng. Chem. Fundam., 8 (1969), 4, pp. 796-802.
  10. Hayat, A., An, X., Qamar, S., Warnecke, G., Seidel-Morgenstern, A., Theoretical Analysis of Forced Segmented Temperature Gradients in Liquid Chromatography, Processes.,7(2019), 11, pp. 846-864.
  11. Brandt, A., Mann, G., Arlt, W., Temperature gradients in preparative high-performance liquid chromatography columns, J. Chromatogr. A., 769 (1997), pp. 109-117.
  12. McCalley, D. V., Effect of temperature and flow-rate on analysis of basic compounds in high-performance liquid chromatography using a reversed-phase column, J. Chromatogr. A, 902 (2000),pp. 311-321.
  13. Sainio, T., Kaspereit, M., Kienle, A., Seidel-Morgenstern, A., Thermal effects in reactive liquid chromatography, Chem. Eng. Sci., 62 (2007), pp. 5674-5681.
  14. Sainio, T., Zhang, L., Seidel-Morgenstern, A., Adiabatic operation of chromatographic fixed-bed reactors, Chem. Eng. J., 168 (2011), pp. 861-871.
  15. Vu, T.D., Seidel-Morgenstern, A., Quantifying temperature and flow rate effects on the performance of a fixedbed chromatographic reactor, J. Chromatogr. A., 1218 (2011), pp. 8097-8109.
  16. Javeed, S. Qamar, S., Seidel-Morgenstern, A.,Warnecke, G., Parametric study of thermal effects in reactive liquid chromatography, Chem. Eng. J., 191 (2012), pp. 426-440.
  17. Qamar, S., Sattar, F. A., Batool, I., Seidel-Morgenstern, A., Theoretical analysis of the influence of forced and inherent temperature fluctuations in an adiabatic chromatographic column, Chem. Eng. Sci., 161 (2017), pp. 249-264.
  18. Qamar, S., Sattar, F. A., Seidel-Morgenstern, A., Theoretical investigation of thermal effects in non-isothermal non-equilibrium reactive liquid chromatography, Chem. Eng. Res. Design., 115 (2016), pp. 145-159.
  19. Qamar, S., Kiran, N., Anwar, T., Bibi, S. and Seidel-Morgenstern, A., Theoretical investigation of thermal effects in an adiabatic chromatographic column using a lumped kinetic model incorporating heat transfer resistances, Ind.& Eng. Chem. Res.,57 (2018), 6, pp. 2287-2297.
  20. Garver, R., The Tschirnhaus transformation. Annals of Mathematics, JSTOR., 29 (1927), 1/4, pp. 319-333.
  21. Rice, R. G., Do, D. D., Applied mathematics and modeling for chemical engineers, Wiley-Interscience., New York, 1995.
  22. Javeed, S., Qamar, S., Ashraf, W., Seidel-Morgenstern, A., Warnecke, G., Analysis and numerical investigation of two dynamic models for liquid chromatography, Chem. Eng. Sci.,90 (2013), pp. 17-31.
  23. Guiochon, G., Felinger, A., Shirazi, D. G., Katti, A.M., Fundamentals of preparative and nonlinear chromatography, 2nd ed., ELsevier Academic press, New York, 2006.
  24. Sajonz, P., Guan-Sajonz, H., Zhong, G., Guiochon, G., Application of the shock layer theory to the determination of the mass transfer rate Coefficient and its Concentration Dependence for Proteins on Anion exchange columns Biotechnol. Prog., 12 (1997), pp. 170-178.
  25. Rehman, J. U., Muneer, A., Abbasi, J. N., Qamar, S., Seidel-Morgenstern, A., Study of thermal effects in twocomponent nonisothermal liquid chromatography considering thermally insulated columns, Ind. Eng. Chem. Research., 57 (2018), pp. 15084-15095.
  26. Durbin, F., Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method, Comput. J., 17 (1974), pp. 371-376.