THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

A numerical study on condensation heat transfer and pressure drop characteristics of low-pressure vapor in a plate heat exchanger

ABSTRACT
In this work, the condensation heat transfer and pressure drop characteristics of plate heat exchangers were simulated, and the threedimensional temperature, pressure, and velocity fields were obtained. From the flow field, we can see that the velocity of vapor is higher than that of condensate. From the pressure field, we can see that the pressure shows a downward trend along the flow direction, and there is, the more pressure drop in the first half of the plate. From the temperature field, we can see that the temperature gradient increases with the increase of velocity and pressure gradient. Meanwhile, the effect of vapor mass flow, dryness and superheat on condensation heat transfer coefficients and pressure drops were investigated. The results show that the pressure drop and heat transfer coefficient both increase with the increase of dryness, degree of superheat and mass flow. In addition, the correlation equations developed to predict the condensation heat transfer and friction factor perfectly agree with the experimental results.
KEYWORDS
PAPER SUBMITTED: 2019-09-14
PAPER REVISED: 2020-02-03
PAPER ACCEPTED: 2020-03-10
PUBLISHED ONLINE: 2020-03-08
DOI REFERENCE: https://doi.org/10.2298/TSCI190914095Z
REFERENCES
  1. L. Wang, B. Sundén, R.M. Manglik, Plate Heat Exchangers e Design, Applications and Performance, WIT Press, 2007.
  2. J.R. Thome, R.L. Amalfi, F. Vakili-farahani, Two-phase heat transfer and pressure drop within plate heat exchangers, Encycl. Two-Phase Heat Transf. Flow II (2015) 145-215.
  3. K. Sarraf, S. Launay, L. Tadrist, Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers, Int. J. Therm. Sci. 94 (2015) 126-138.
  4. J. Lee, K.S. Lee, Flow characteristics and thermal performance in chevron type plate heat exchangers, Int. J. Heat Mass Transf. 78 (2014) 699-706.
  5. I. Gherasim, M. Taws, N. Galanis, C.T. Nguyen, Heat transfer and fluid flow in a plate heat exchanger part II: assessment of laminar and two-equation turbulent models, Int. J. Therm. Sci. 50 (2011) 1499-1511.
  6. A. López-Belchí, F. Illán-Gómez, Evaluation of a condenser based on mini-channels technology working with R410A and R32. Experimental data and performance estimate, Appl. Energy 202 (2017) 112-124.
  7. S.M.A.N.R. Abadi, J.P. Meyer, J. Dirker, Numerical simulation of condensation inside inclined smooth tube, Chem. Eng. Sci. 182 (2018) 132-145.
  8. S.M.A.N.R. Abadi, J.P. Meyer, J. Dirker, Numerical investigation of condensation inside an inclined smooth tube, in: Proc. 13th Int. Conf. Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia, 2017, pp. 572-576.
  9. G.A. Longo, C. Zilio, G. Righetti, J.S. Brown, Condensation of the low GWP refrigerant HFO1234ze (E) inside a Brazed Plate Heat Exchanger, Int. J. Refrig. 38 (2014) 250-259.
  10. A. Jokar, M.H. Hosni, S.J. Eckels, Dimensional analysis on the evaporation and condensation of refrigerant R-134a in minichannel plate heat exchanger, Appl. Therm. Eng. 26 (17-18) (2006) 2287-2300.
  11. Wang LK, Sunden B, Yang QS. Pressure drop analysis of steam condensation in a plate heat exchanger. Heat Transfer Eng 1999;20(1):71-7.
  12. Han XH, Cui LQ, Chen SJ, Chen GM, Wang Q. A numerical and experimental study of chevron, corrugated-plate heat exchangers. Int Commun Heat Mass Transf 2010;37(8):1008-14.
  13. Shi, Z.Y., Chen, J.P., Grabenstein, V., Kabelac, S., 2010. Experimental investigation on condensation heat transfer and pressure drop of R134a in a plate heat exchanger. Heat Mass Tran. 46, 1177-1185.
  14. W. Nusselt, The condensation of steam on cooled surfaces, Z Des Vereines Dtsch Ingenieure 60 (1916) 541-575.
  15. Bromley, L., 1952. Effect of heat capacity of condensate. Ind. Eng.Chem. 44 (12), 2966-2969.
  16. A. Jokar, S.J. Eckels, M.H. Hosni, T.P. Gielda, Condensation heat transfer and pressure drop of brazed plate heat exchangers using refrigerant R134a, J. Enhanced Heat Transfer 11 (2) (2004) 161-182.
  17. Kuo, W.S., Lie, Y.M., Hsieh, Y.Y., Lin, T.F., 2005. Condensation heat transfer and pressure drop of refrigerant R410A flow in a vertical plate heat exchanger. Int. J. Heat Mass Transfer 48,5205-5220.
  18. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.
  19. Brackbill J, Kothe DB, Zemach C. A continuum method for modeling surface tension. J. Comput. Phys. 1992;100:335-54.
  20. Lee WH. A Pressure Iteration Scheme for Two-phase Flow Modeling. Washington,DC: Hemisphere; 1980.
  21. ALEXIADES V,SOLOMON A D Mathematical Modeling of Melting and Freezing Processes
  22. WANG Zhongzheng, Guo Xinchuan, Wang Yang, et al Flowing Condensation Heat Transfer Law of Steam in Complex Channels