International Scientific Journal

Thermal Science - Online First

online first only

A novel method for calculating effective thermal conductivity of particulate fouling

The accurate thermal conductivity of fouling plays a very significant role in designing heat exchanger. In this paper, a novel method of calculating the effective thermal conductivity (ETC) of particulate fouling is put forward by using Image-Pro-Plus image processing, the finite element method and ANSYS parametric design language (APDL). First of all, according to the analysis on the particulate fouling samples features, the particulate fouling is considered as porous media with fractal characteristics, whose microscopic network model is established using the finite element method, and each unit body material properties are randomly assigned by APDL. Secondly, ETC of particulate fouling model is calculated by the steady state plate method. And then, the influence of particulate fouling microstructure on ETC is explored. Last, it is also show that the calculation resulting of ETC agrees well with available experimental data and empirical correlation. Moreover, it has been shown that ETC of particulate fouling is closely associated with the porosity and pore size. The method can be used to research on the thermal conductivity of fouling, discuss the influence of microstructure on ETC of fouling, and provide the guidelines for designing of heat exchanger on calculating accurate thermal conductivity of fouling.
PAPER REVISED: 2019-06-05
PAPER ACCEPTED: 2019-06-29
  1. E. N. Sieder. Application of fouling factors in the design of heat exchangers. Heat Transfer. New York: ASME. 1935: 82-86
  2. D.Hasson. Rate of decrease of heat transfer due to scale deposition. Dechema Monogr,1962,47: 233-282
  3. D. Butterworth,C. F. Mascone. Heat transfer heads into the 21st century. ChemEngProg.1991, 87(9): 30-37
  4. E. F. C. Somerscales. Fouling of heat transfer equipment: a Historical Review. Heat Transfer Engineering. 1990, 11(1): 19-36
  5. W. L. V. Nostrand, S.H. Leach, J.L. Haluska. Economic penalties associated with the fouling of refinery heat transfer equipment, in:E.F.C. Somerscales, J.G. Knudsen (Eds.), Fouling of Heat Transfer Equipment, Hemisphere, Washington, D.C, 1981
  6. R. Steinhagen, H.M. Steinhagen, K. Maagni. Problems and costs due to heat exchanger fouling in new zealand industries. Heat Transf.Eng.1993, 11(7): 19-30
  7. H. M. Steinhagen. Cooling water fouling in heat exchanger. Advances in Heat Transfer. New York: Academic Press. 1999, 33: 415-496
  8. A. Helalizadeh, H. Müller-Steinhagen, M. Jamialahmadia. Application of fractal theory for characterisation of crystalline deposits. Chemical Engineering Science. 2006,61:2069-2078
  9. C. E. Krohn. Fractal measurements of sandstone, shales and carbonates. Geophys Res. 1988,93(B4):3297-3305
  10. J. C. Maxwell. A treatise on electricity and magnetism, Clarendon Press, Oxford,1873.
  11. R. C. Progelhof, J.L. Throne, R.R. Ruetsch. Methods for predicting the thermal conductivity of composite systems: a Review, Polym. Eng. Sci. 1976, 16 (9) 615-625
  12. P. Cheng, C.T. Hsu. The effective stagnant thermal conductivity of porous media with periodic structures, J. Porous Media. 1999, 2(1): 19-38
  13. R. Singh, H.S. Kasana. Computational aspects of effective thermal conductivity of highly porous metal foams, Appl. Therm. Eng. 2004, 24 (13): 1841-1849
  14. E. Solórzano, J.A. Reglero, M.A. Rodríguez-Pérez, D. Lehmhus, M. Wichmann,J.A. de Saja. An experimental study on the thermal conductivity of aluminum foams by using the transient plane source method, Int. J. Heat. Mass Transf. 2008, 51: 6259-6267
  15. B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel,M. Kind, H. Martin. Determination of the thermal properties of ceramic sponges, Int. J. Heat. Mass Transf. 2010, 53: 198-205
  16. G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, X.Z. Du. Thermal conductivities study onsilica aerogel and its composite insulation materials, Int. J. Heat Mass Transfer. 2011, 54 (11-12): 2355-2366
  17. MingWei Tian, Wang Zhen, Wang Lin,etc. Numerical prediction of degree of skin burn in thermal protective garment air-gap human body sys. thermal science, 2017, 21, 4, 1813-1819.
  18. R. Bernegger,S. J. Altenburg, M. Röllig,C. Maierhofer. Applicability of a 1D analytical model for Pulse thermography of laterally heterogeneoussemitransparent materials. International Journal of Thermophysics, 2018, 39(8): 90.
  19. Yunjing Lu, Mingwei Tian, Xuantong Sun,etc. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Composites Part A: Applied Science and Manufacturing, 2019, 117, 202-210.
  20. M Prieto, J.M. Vallina, I. Suarez, I. Martin. Application of a design code for estimating fouling on-line in a power plant condenser cooled by seawater. Exp.Therm. Fluid Sci. 25, 329-336
  21. J. Ganan, Rahman Al-Kassir, A.,J.F.Gonzalez, A. Macıas, M.A. Diaz. Influence of the cooling circulation water on the efficiency of a thermonuclear plant. Appl. Thermal Eng. 2005, 25: 485-494
  22. Webb, Ralph, L. Enhanced condenser tubes in a nuclear power plant for heat rate improvement. Heat Transfer Eng.2011 32:905-913.
  23. B. Sengoz, G. Isikyakar. Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J Hazard Mater. 2008, 150:424-432
  24. G. Airey. Rheological evaluation of ethylene vinylacetate polymer modified bitumens. Constr Build Mater. 2002, 16:473-487
  25. D.H. Xia, S.S. Guo, L. Ren, Study of the reconstruction of fractal structure of closed-cell aluminum foam and its thermal conductivity, J. Therm. Sci. 2012, 21 (1): 77-81
  26. V.V. Calmidi, R.L. Mahajan. Forced convection in high porosity metal foams,Transfer ASME: J. Heat Transfer , 2000, 122 (3): 557-565
  27. K. Boomsma, D. Poulikakos. On the effective thermal conductivity of a three dimensionally structured fluid saturated metal foam, Int. J. Heat Mass Transfer. 2001, 44 (4): 827-836
  28. R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams, Appl. Therm. Eng, 2004, 24 (13) : 1841-1849
  29. J. C. Maxwell-Garnett. Colours in metal glasses and in metallic films, Philos.Trans. R. Soc. Lond.1904, 203: 385-420
  30. C. Veyhl, I.V. Belova, G.E. Murch, T. Fiedler, On the thermal conductivity of sintered metallic fibre structures, Int. J. Heat Mass Transfer. 2012, 55: 2440-2448
  31. E. Solorzano, J.A. Reglero, M.A. Rodríguez-Perez, D. Lehmhus, M. Wichmann,J.A.D. Saja. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Int. J. Heat Mass Transfer. 2008, 51: 6259-6267
  32. Y. Sugimura, J. Meyer, M.Y. He, H.B. Smith, J. Gernstedt, A.G. Evans. On the mechanical performance of closed cell al alloy foams, Acta Mater. 1997, 45 (12): 5245-5259
  33. D. A. G. Bruggeman. Dielectric constant and conductivity of mixtures of isotropic materials, Ann. Phys.1953 , 24: 636-679
  34. L. R. Glicksman, Heat transfer in foams, chapman and hall, London. 1994.
  35. A. N. Abramenko, A.S. Kalinichenko, Y. Burtser, V.A. Kalinichenko, S.A. Tanaeva,I.P. Asilenko. Determination of the thermal conductivity of foam aluminum, J.Eng. Phys. Thermophys. 1999, 72 (3): 369-373
  36. M. F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal foams: A Design Guide, Elsevier Science, Burlington. 2000
  37. R. C. Progelhof, J.L. Throne. Cooling of structural foams, J. Cell. Plast. 1975 , 11: 152-163
  38. R. Dyga, M.Placzek. Heat transfer through metal foam-fluid system. experimental thermal and fluid science. 2015, 65: 1-12