International Scientific Journal

Thermal Science - Online First

online first only

Numerical-experimental validation of the welding thermal cycle carried out with the MIG welding process on a 6063-T5 aluminium tubular profile

The purpose of this work is to validate the thermal welding cycle obtained experimentally with the MIG welding process on a 6063-T5 aluminium tubular profile using the finite element method. The assembly formed by the tubular profile and the weld bead obtained experimentally is represented in an accurate way, taking care of both the geometry and the contour of the weld bead. The precision achieved in the numerical-experimental validation carried out by means of the finite element method is due to the care that has been taken in drawing the welded piece together with the weld bead made experimentally. In the validation carried out, the experimental and numerical cooling curves and the critical cooling time between 400 and 300ºC (t4/3) in both curves are compared.
PAPER REVISED: 2019-01-13
PAPER ACCEPTED: 2019-02-02
  1. Boumerzoug, Z., et al., Thermal Cycle Simulation Of Welding Process In Low Carbon Steel, Mater. Sci. Eng. A, 530 (2011), pp. 191-195
  2. Sarsilmaz, F., Relationship between micro-structure and mechanical properties of dissimilar aluminum alloy plates by friction stir welding., Therm. Sci., (2018)
  3. Ambriz, R., et al., Effect Of The Weld Thermal Cycles By The Modified Indirect Electric Arc (MIEA) On The Mechanical Properties Of The AA6061-T6 Alloy, Rev. Metal., 45 (2009), 1, pp. 42-51
  4. Ambriz, R.R., et al., Effect Of The Weld Thermal Cycles Of The Modified Indirect Electric Arc On The Mechanical Properties Of The AA6061-T6 Alloy, Weld. Int., 24 (2010), 4, pp. 321-328
  5. Taban, E., et al., Characterization Of 6061-T6 Aluminum Alloy To AISI 1018 Steel Interfaces During Joining And Thermo-Mechanical Conditioning, Mater. Sci. Eng. A, 527 (2010), 7-8, pp. 1704-1708
  6. Piris, N., et al., The Influence Of Heat Treatment On Strain Hardening And Strain-Rate Sensitivity Of Aluminium Alloys For Aerospace, Rev. Metal., 40 (2004), 4, pp. 288-293
  7. Polmear, I., et al., Light Alloys: Metallurgy Of The Light Metals, Butterworth-Heinemann, 2017
  8. Kassner, M., McMahon, M., The Dislocation Microstructure Of Aluminum, Metall. Mater. Trans. A, 18 (1987), 5, pp. 835-846
  9. Shercliff, H., Ashby, M., A Process Model For Age Hardening Of Aluminium Alloys—I. The Model, Acta Metall. Mater., 38 (1990), 10, pp. 1789-1802
  10. Perez, I., et al., Analysis Of The Influence Of Aging Heat Treatment On The Modification Of The Mechanical Properties Of The Alloy AA6060 Processed By ECAE, Rev. Metal., 47 (2011), 1, pp. 76-89
  11. Croucher, T., Quenching Of Aluminum Alloys: What This Key Step Accomplishes, Heat Treat., 14 (1982), 5, pp. 20-21
  12. Valdenebro, J.M., et al., Ciclo Térmico Y Soldabilidad De Las Aleaciones De Aluminio, Rev. Metal., 53 (2017), 3, pp. 103
  13. Cahn, J.W., The Kinetics Of Grain Boundary Nucleated Reactions, Acta Metall., 4 (1956), 5, pp. 449-459
  14. Miguel, V., et al., Optimización Multiobjetivo Del Proceso De Soldeo GMAW De La Aleación AA 6063-T5 Basado En La Penetración Y En La Zona Afectada Térmicamente, Rev. Metal., 51 (2015), 1, pp. 037
  15. Meseguer-Valdenebro, J.L., et al., Numerical Study Of TTP Curves Upon Welding Of 6063-T5 Aluminium Alloy And Optimization Of Welding Process Parameters By Taguchi\' S Method, (2017)
  16. Rosenthal, The Theory Of Moving Sources Of And Its Applications To Metal Treatments, Trans. ASME, 68 (1946), pp. 849-865
  17. Rykalin, R.R., Energy Sources For Welding, Weld. WORLD, 12 (1974), 9/10, pp. 272-248
  18. Zeng, Z., et al., Numerical And Experimental Investigation On Temperature Distribution Of The Discontinuous Welding, Comput. Mater. Sci., 44 (2009), 4, pp. 1153-1162
  20. Wang, H., et al., Numerical Simulation of the Prestressed Laser Welding of 7075-T7451 Aluminum Alloy Sheet, Proceedings, Machining and advanced manufacturing technology x, Laublsrutistr 24, CH-8717 Stafa-Zurich, Switzerland, 2010, Vol. 431-432, pp. 13-16
  21. Alimoradi, A., et al., 3-D Finite Element Simulation of Friction Stir Welding Process of Non Similar Aluminum-Copper Sheets, Proceedings, DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, Laublsrutistr 24, CH-8717 Stafa-Zurich, Switzerland, 2011, Vol. 312-315, pp. 953-958
  22. Hirasawa, S., et al., Analysis Of Effect Of Tool Geometry On Plastic Flow During Friction Stir Spot Welding Using Particle Method, J. Mater. Process. Technol., 210 (2010), 11, pp. 1455-1463
  23. Keivani, R., et al., Effects Of Pin Angle And Preheating On Temperature Distribution During Friction Stir Welding Operation, Trans. Nonferrous Met. Soc. CHINA, 23 (2013), 9, pp. 2708-2713
  24. Zhang, Z., Zhang, H.W., Numerical Studies On Effect Of Axial Pressure In Friction Stir Welding, Sci. Technol. Weld. Join., 12 (2007), 3, pp. 226-248
  25. Pavelic, V., et al., experimental and computed temperature histories in gas tungsten-arc welding of thin plates, Weld. J., 48 (1969), 7, pp. S295-
  26. Paley, Z., Hibbert, P., Computation of temperatures in actual weld designs, Weld. J., 54 (1975), 11, pp. S385-S392
  27. Goldak, J., et al., A New finite-element model for welding heat-sources, Metall. Trans. B-Process Metall., 15 (1984), 2, pp. 299-305
  28. Meseguer-Valdenebro, J.L., et al., Experimental Validation Of A Numerical Method That Predicts The Size Of The Heat Affected Zone. Optimization Of The Welding Parameters By The Taguchi's Method, Trans. Indian Inst. Met., 69 (2016), 3, pp. 783-791
  29. Zhu, X.K., Chao, Y.J., Effects Of Temperature-Dependent Material Properties On Welding Simulation, Comput. Struct., 80 (2002), 11, pp. 967-976
  30. Haupin, W., Aluminum, in: Encyclopedia of Physical Science and Technology (Third Edition) (Ed. R.A. Meyers), Academic Press, New York, 2003, pp. 495-518
  31. ***, UNE-EN-287-1. Cualificación de soldadores. Soldeo por fusión. Parte 1: Aceros., AENOR
  32. Mato, P., et al., A Simplified Engineering Method For A T-Joint Welding Simulation, Therm. Sci., 22 (2018), 3, pp. S867-S873
  33. Deng, D., et al., Numerical Simulation Of Welding Distortion In Large Structures, Comput. Methods Appl. Mech. Eng., 196 (2007), 45-48, pp. 4613-4627
  34. Segarra, J.A., Portolés, A., Caracterización Microestructural Y Modelización Mediante Elementos Finitos De Uniones Soldadas de la aleación de magnesio AZ31, Rev. Metal., 54 (2018), 1, pp. 114
  35. Ivanović, I.B., et al., Numerical Study Of Transient Three-Dimensional Heat Conduction Problem With A Moving Heat Source, Therm. Sci., 15 (2011), 1, pp. 257-266
  36. Bjelić, M.B., et al., Numerical Modeling Of Two-Dimensional Heat-Transfer And Temperature-Based Calibration Using Simulated Annealing Optimization Method: Application To Gas Metal Arc Welding, Therm. Sci., 20 (2016), 2, pp. 655-665
  37. Meseguer-Valdenebro, J.L., et al., Electrical Parameters Optimisation On Welding Geometry In The 6063-T Alloy Using The Taguchi Methods, Int. J. Adv. Manuf. Technol., 98 (2018), 9-12, pp. 2449-2460
  38. Fachinotti, V.D., et al., Analytical Solutions Of The Thermal Field Induced By Moving Double-Ellipsoidal And Double-Elliptical Heat Sources In A Semi-Infinite Body, Int. J. Numer. METHODS Biomed. Eng., 27 (2011), 4, pp. 595-607
  39. Tekelioglu, M., Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces., Therm. Sci., 21 (2017), 3