THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Performance assessment of different global solar radiation models - Case study: New Borg El-Arab city, Egypt

ABSTRACT
The unavailability of the solar radiation measurements for different locations around the world leads to develop various empirical models to estimate the global solar radiation. In this consider, this study aims to investigate the performance of different solar radiation models to predict the monthly average daily global solar radiation on a horizontal surface. To achieve this, the measured global solar radiation data for a case study location are used. The model predictions are compared with the measured data to introduce the most accurate model for estimating the global solar radiation. The performance of each model is evaluated based on the different statistical indicators. The results show that the Robaa model has the best performance among the other models. Consequently, it can be used for estimating global solar radiation on a horizontal surface in the location under consideration. The accurate estimations of the global solar radiation using this approach can be used in the design and evaluation of performance for different solar applications.
KEYWORDS
PAPER SUBMITTED: 2016-08-03
PAPER REVISED: 2017-02-01
PAPER ACCEPTED: 2017-02-20
PUBLISHED ONLINE: 2017-04-08
DOI REFERENCE: https://doi.org/10.2298/TSCI160803085H
REFERENCES
  1. M. Despotovic, V. Nedic, D. Despotovic, S. Cvetanovic, Review and statistical analysis of different global solar radiation sunshine models, Renew. Sustain. Energy Rev. 52 (2015) 1869-1880. doi:10.1016/j.rser.2015.08.035.
  2. T.C. Kandpal, L. Broman, Renewable energy education: A global status review, Renew. Sustain. Energy Rev. 34 (2014) 300-324. doi:10.1016/j.rser.2014.02.039.
  3. G.E. Hassan, A.H. Salah, H. Fath, M. Elhelw, A. Hassan, K.M. Saqr, Optimum operational performance of a new stand-alone agricultural greenhouse with integrated-TPV solar panels, Sol. Energy. 136 (2016) 303-316. doi:10.1016/j.solener.2016.07.017.
  4. A.N. Aziz, O.O. Rabhy, M.E. Youssef, Modeling and Experimental investigation for PEMFC to achieve high Fuel Cell performance, in: Int. Conf. New Trends Sustain. Energy-ICNTSE, Pharos University and KTH VETENSKAP OCH KONST, 2016: pp. 228-231.
  5. A.H. Salah, G.E. Hassan, Performance Improvement of Roof Transparent Solar Still Coupled With Agriculture Greenhouse, in: Int. Conf. New Trends Sustain. Energy-ICNTSE, Pharos University and KTH VETENSKAP OCH KONST, 2016: pp. 151-154.
  6. G. Hassan, A. Salah, M. Elhelw, A. Hassan, H. Fath, G.E. Hassan, Development Of A Novel Solar Driven Agriculture Green o se : Sel S en O Energy nd Irr ga ng Wa er n: In Desal n sso World Congr Desal n Wa er Reuse, 2015: pp. 1-10.
  7. O.O. Ajayi, O.D. Ohijeagbon, C.E. Nwadialo, O. Olasope, New model to estimate daily global solar radiation over Nigeria, Sustain. Energy Technol. Assessments. 5 (2014) 28-36. doi:10.1016/j.seta.2013.11.001.
  8. I M and Ž R DJURIŠIĆ IMP C OF D I Y V RI IO OF SO R R DI IO O PHO OVO IC P S ECO OMY HE OPE M RKE Case S dy " avan š e " ( Serbia ), Therm. Sci. 19 (2015) 837-844. doi:10.2298/TSCI141025009B.
  9. A. Das, J. Park, J. Park, Estimation of available global solar radiation using sunshine duration over south Korea, J. Atmos. Solar-Terrestrial Phys. 134 (2015) 22-29. doi:10.1016/j.jastp.2015.09.001.
  10. Y. El Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul, New model to estimate and evaluate the solar radiation, Int. J. Sustain. Built Environ. 3 (2014) 225-234. doi:10.1016/j.ijsbe.2014.11.001.
  11. J.B. Lukovic, B.J. Bajat, M.S. Kilibarda, D.J. Filipovic, High resolution grid of potential incoming solar radiation for Serbia, Therm. Sci. 19 (2015) S427-S435. doi:10.2298/TSCI150430134L.
  12. E. Youssef, G.E. Hassan, M.A. Ali, Investigating the performance of different models in estimating global solar radiation, Adv. Nat. Appl. Sci. 10 (2016) 379-389.
  13. G.E. Hassan, M.E. Youssef, Z.E. Mohamed, M.A. Ali, A.A. Hanafy, New Temperature-based Models for Predicting Global Solar Radiation, Appl. Energy. 179 (2016) 437-450. doi:10.1016/j.apenergy.2016.07.006.
  14. M.A. Ali, G.E. Hassan, M.E. Youssef, Assessment the Performance of Artificial Neural Networks in Estimating Global Solar Radiation, in: Int. Conf. New Trends Sustain. Energy-ICNTSE, Pharos University and KTH VETENSKAP OCH KONST, 2016: pp. 148-150.
  15. G.E. Hassan, M.E. Youssef, M.A. Ali, Z.E. Mohamed, A.I. Shehata, Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt, J. Atmos. Solar-Terrestrial Phys. 149 (2016) 69-80. doi:10.1016/j.jastp.2016.09.011.
  16. H.O. Menges, C. Ertekin, M.H. Sonmete, Evaluation of global solar radiation models for Konya, Turkey, Energy Convers. Manag. 47 (2006) 3149-3173. doi:10.1016/j.enconman.2006.02.015.
  17. M. El-Metwally, Simple new methods to estimate global solar radiation based on meteorological data in Egypt, Atmos. Res. 69 (2004) 217-239. doi:10.1016/j.atmosres.2003.09.002.
  18. V.H. Quej, J. Almorox, M. Ibrakhimov, L. Saito, Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico, Energy Convers. Manag. 110 (2016) 448-456. doi:10.1016/j.enconman.2015.12.050.
  19. F. Besharat, A. a. Dehghan, A.R. Faghih, Empirical models for estimating global solar radiation: A review and case study, Renew. Sustain. Energy Rev. 21 (2013) 798-821. doi:10.1016/j.rser.2012.12.043.
  20. M. El-Metwally, Sunshine and global solar radiation estimation at different sites in Egypt, J. Atmos. Solar-Terrestrial Phys. 67 (2005) 1331-1342. doi:10.1016/j.jastp.2005.04.004.
  21. Z.A. Al-Mostafa, A.H. Maghrabi, S.M. Al-Shehri, Sunshine-based global radiation models: A review and case study, Energy Convers. Manag. 84 (2014) 209-216. doi:10.1016/j.enconman.2014.04.021.
  22. H. Khorasanizadeh, K. Mohammadi, Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran, Energy. 51 (2013) 257-266. doi:10.1016/j.energy.2012.11.007.
  23. R. Kumar, R.K. Aggarwal, J.D. Sharma, Comparison of regression and artificial neural network models for estimation of global solar radiations, Renew. Sustain. Energy Rev. 52 (2015) 1294-1299. doi:10.1016/j.rser.2015.08.021.
  24. H. Khorasanizadeh, K. Mohammadi, Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran, Energy Convers. Manag. 76 (2013) 385-392. doi:10.1016/j.enconman.2013.07.073.
  25. S. a. Khalil, A.M. Shaffie, A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt, Renew. Sustain. Energy Rev. 27 (2013) 853-863. doi:10.1016/j.rser.2013.06.038.
  26. Prescott JA., Evaporation from water surface in relation to solar radiation, Trans. R. Soc. Aust. 46 (1940) 114-118.
  27. W. Yao, Z. Li, Y. Wang, F. Jiang, L. Hu, Evaluation of global solar radiation models for Shanghai, China, Energy Convers. Manag. 84 (2014) 597-612. doi:10.1016/j.enconman.2014.04.017.
  28. A.A. ADEALA, Z. HUAN, C.C. ENWEREMADU, Evaluation of Global solar Radiaiton Using Multile Weather Parameters as Predictors for South Africa Provinces, Therm. Sci. 19 (2015) 495-509. doi:10.2298/TSCI130714072A.
  29. S.A. Khalil, A.M. Shaffie, Performance of Statistical Comparison Models of Solar Energy on Horizontal and Inclined Surface, Int. J. Energy Power. 2 (2013) 8-25.
  30. T. Ahmed, T. Hussein, Estimation of Hourly Global Solar Radiation in Egypt Using Mathematical Model, Int. J Latest Trends Agr. Food Sci. (2012) 74-82.
  31. S.M. Robaa, On the estimation of UV-B radiation over Egypt, Q. J. Hungarian Meteorol. Serv. 112 (2008) 45-60.
  32. S.M. Robaa, On the estimation of global and diffuse solar radiation over Egypt, Mausam. 54 (2003) 511-520.
  33. S.E. Barbaro S, Coppolino S, Leone C, Global solar radiation in Italy, Sol. Energy. 20 (1978) 431-435. www.sciencedirect.com/science/article/pii/0038092X78901639.
  34. S.M. Robaa, Validation of the existing models for estimating global solar radiation over Egypt, Energy Convers. Manag. 50 (2009) 184-193. doi:10.1016/j.enconman.2008.07.005.
  35. S. Robaa, Evaluation of sunshine duration from cloud data in Egypt, Energy. 33 (2008) 785-795. doi:10.1016/j.energy.2007.12.001.
  36. I. Supit, R.R. van Kappel, A simple method to estimate global radiation, Sol. Energy. 63 (1998) 147-160. doi:10.1016/S0038-092X(98)00068-1.
  37. A.. El-Sebaii, A.. Trabea, Estimation of Global Solar Radiation on Horizontal Surfaces Over Egypt, Egypt. J. Solids. 28 (2005) 163-175.
  38. M.T.Y. Tadros, Uses of sunshine duration to estimate the global solar radiation over eight meteorological stations in Egypt, Renew. Energy. 21 (2000) 231-246. doi:10.1016/S0960-1481(00)00009-4.
  39. a. . Trabea, Analysis of solar radiation measurements at Al-Arish area, North Sinai, Egypt, Renew. Energy. 20 (2000) 109-125. doi:10.1016/S0960-1481(99)00070-1.
  40. a. a. Trabea, M.A.M. Shaltout, Correlation of global solar radiation with meteorological parameters over Egypt, Renew. Energy. 21 (2000) 297-308. doi:10.1016/S0960-1481(99)00127-5.
  41. M.T.Y. Tadros, M.A.M. Mustafa, Estimation of the Global Horizontal Solar Radiation in Iraq, Int. J. Emerg. Technol. Adv. Eng. 4 (2014) 587-605.
  42. NASA Data, NASA Surface meteorology and Solar Energy, (n.d.). eosweb.larc.nasa.gov/cgi-bin/sse/daily.cgi & power.larc.nasa.gov/cgi-bin/agro.cgi?email=agroclim@larc.nasa.gov (accessed April 10, 2015).
  43. Weather Underground, Weather History for HEBA, (n.d.). www.wunderground.com/weather-forecast/zmw:00000.1.WHEBA (accessed April 1, 2015).
  44. Microsoft, Microsoft C# Language, (n.d.). msdn.microsoft.com/en-us/library/aa289180(v=vs.71).aspx (accessed January 1, 2015).
  45. I. Sommerville, Software Engineering 8, 8th ed, Addison-Wesley Longman Publishing Co, Boston, MA, USA, 2007.
  46. O D Va d Garo s me Coşk nçay ys e n-Can, A survey of software engineering practices in Turkey, J. Syst. Softw. 108 (2015) 148-177.
  47. S. Ravichandran, J.D. Rathnaraj, Analysis of Ratio of Global to Extra-Terrestrial Radiation (Clearness Index) at some Tropical Locations in India, Therm. Sci. 1 (2015). doi:10.1017/CBO9781107415324.004.
  48. H. Khorasanizadeh, K. Mohammadi, Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran, Energy. 51 (2013) 257-266. doi:10.1016/j.energy.2012.11.007.
  49. E. Camacho, M. Berenguel, F. Rubio, D. Martínez, Chapter 1-Solar Energy Fundamentals, in: Control Sol. Energy Syst., Springer London, London, 2012: pp. 1-23. doi:10.1007/978-0-85729-916-1.
  50. S. Kalogirou, Chapter 2-Environmental Characteristics, in: Sol. Energy Eng. Process. Syst., 1st ed, Elsevier Inc, 2009: pp. 49-120. doi:10.1016/B978-0-12-374501-9.00002-9.
  51. ngs r m ., Solar and terrestrial radiation, Q. J. R. Meteorol. Soc. 50 (1924) 121-125.
  52. H. Li, W. Ma, Y. Lian, X. Wang, Estimating daily global solar radiation by day of year in China, Appl. Energy. 87 (2010) 3011-3017. doi:10.1016/j.apenergy.2010.03.028.
  53. H. Li, F. Cao, X. Wang, W. Ma, A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China, Sci. World J. (2014). www.hindawi.com/journals/tswj/aip/128754/ (accessed November 21, 2015).
  54. R Yacef Mellit S Belaid Z Şen New combined models for estimating daily global solar radiaton from measured air temperature in semi-arid climates: Application in Ghardaïa, Algeria, Energy Convers. Manag. 79 (2014) 606-615. doi:10.1016/j.enconman.2013.12.057.