THERMAL SCIENCE

International Scientific Journal

THERMAL WATER UTILIZATION IN THE HUNGARIAN GREENHOUSE PRACTICE

ABSTRACT
Corresponding author; E-mail: fogarassy.csaba@gtk.szie.hu This article focuses on the usage of geothermic energy in greenhouses, its energy-, economic efficiency-, and sustainability-related questions. The most notable cost greenhouses produce during operation is the usage of heat energy, which is why when planning a system for this purpose, the energetic analysis of the solution to be used is one of the most important factors. The presented analyses suggest that of the energy resources currently available and usable, geothermic energy has the lowest unit cost. In the case of greenhouse heating, this method turned out to be the most cost-effective among all solutions using any of the energy resources. Regarding the environmental aspect, the CO2 emission rates of the various heating methods have been examined as well. Using the thermal water of the greenhouses before reinjection is an efficient way of energy utilization. Even though the firewood and pellet boilers look the most efficient forms for the first time, past experiences proved them to be the most expensive ones as well. Therefore, it can be stated that the utilization of geothermal energy is the best solution for greenhouse heating, from the perspectives of economic and environmental aspects as well. Based on the previous observations in terms of environmental and economic efficiency this paper aims to discover the opportunities for high-scale thermal utilization in Hungary in order to meet its future renewable targets.
KEYWORDS
PAPER SUBMITTED: 2016-09-12
PAPER REVISED: 2016-12-29
PAPER ACCEPTED: 2016-12-29
PUBLISHED ONLINE: 2017-02-12
DOI REFERENCE: https://doi.org/10.2298/TSCI160831011N
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 2, PAGES [1015 - 1024]
REFERENCES
  1. Hungarian Ministry of National Development., Renewable Energy Action Plan of Hungary For 2010-2020, Budapest, 2011 pp.13-15
  2. Lipsey, L., Pluymaekers, M., Goldberg, T., van Oversteeg, K., Ghazaryan, L., Cloetingh, S., van Wees, J. D., Numerical modeling of thermal convection in the Luttelgeest carbonate platform, the Netherlands, Geothermics, 64 (2016), pp. 135-151 dx.doi.org/10.1016/j.geothermics.2016.05.002
  3. Árpási, M., Geothermal Update of Hungary 2000-2004, in: Proceedings World Geothermal Congress Antalya, Istanbul, Turkey, 2005, pp. 41-52
  4. Nagygál, J., A termálvíz hasznosítása a mezőgazdaságban
  5. Bartels, J., Seibt, P., Wolfgramm; in: Workshop "Geothermal energy in Hungary update barriers and solution statements", Budapest, 2011 pp. 20-41
  6. Lund, J. W., Boyd, T., L., Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60 (2016), pp. 66-93 dx.doi.org/10.1016/j.geothermics.2015.11.004
  7. Büki, G., Megújuló energiák hasznosítása
  8. Nagygál, J., Experiences of the Geothermal Project in Szentes, in: Hungary IGC, Freiburg, Germany, 2014 pp. 1-13
  9. Nagygál, J., Tóth, L., Horvath, B., Bártfai, Z., Szabó, I., Enhancing the effectiveness of thermal water consumption via heat pumping, APSTRACT - Applied Studies in Agribusiness and Commerce, 9 (2015), 4, pp. 53-58 dx.doi.org/10.19041/APSTRACT/2015/4/7
  10. Beke, J., The basics of technical thermodynamics. Szent István University Publisher, Gödöllő, Hungary, 2014 pp. 15-27
  11. Ghosal, M. K., Tiwary, G. N. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy, Solar Energy, 5 (2003) pp. 603-613 dx.doi.org/10.1016/j.solener.2003.12.004
  12. Bergman, T. L., Lavine, A. S., Frank, P. I., David P. D., Fundamentals of Heat and Mass Transfer (7th ed.), John Wiley & Sons Inc., New York, USA, 2011 pp. 382-390
  13. ANSI/ASAE EP 406.4 Standard: heating, ventilation and cooling greenhouses. American Society of Agricultural Engineers, MI, USA, 2003 pp. 5-100
  14. Nagygál, J., Tóth, L., Beke, J., Szabó I., Comparison of Possible Greenhouse Energy Sources, Hungarian Agricultural Engineering, 26 (2014), pp. 47-53 dx.doi.org/10.17676/HAE.2014.26.47
  15. Szongoth, G., Hegedűs, S., Buranszki J., Providing geotechnical information on basis of boreholegeophysical measurements in underground-drilled boreholes, in: Geological Site Investigation and Risk Analysis ITA SEE, Dubrovnik, Croatia, 2011, pp. 27-38
  16. Szongoth, G., Barcza, M., Kiss, S., Nagygál, J., Termálkutak állapotának változásai Szentes térségében geofizikai vizsgálatok alapján
  17. Szanyi, J., Kóbor, B., Csanádi, A., Medgyes, T., Bálint, A., Kiss, S., Kovács, B., Sustainable Geothermal Reservoir Management in South-East Hungary, Oradea: Editura Universitatii din Oradea, (2012) pp. 113-116
  18. Szanyi J., Kovács, B., Medgyes, T., Kóbor, B., Kurunczi, M., Vass, I., Injection of Thermal Water into Porous Reservoirs. In: Proceedings World Geothermal Congress, Bali, Indonesia, 2010, p. 51-58.
  19. Szongoth, G., Galsa, A., Steierlein, I., Húsz szentesi hévízkút teljeskörű kútvizsgálatának eredményei - '10 éve a geotermia szolgálatában'
  20. Mago, L. Working hours demand of transportation tasks in foil covered field vegetable production technology. Hungarian Agricultural Engineering, 29 (2016) pp. 28-31 dx.doi.org/10.17676/HAE.2016.29.28

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence