THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

PERIODIC OSCILLATING SOLITONS AND HOMOCLINIC BREATHER-WAVE SOLUTION FOR THE (3+1)-DIMENSIONAL JIMBO-MIWA EQUATION

ABSTRACT
With the aid of symbolic computation, some new types of breathing wave solutions to a (3+1)-D Jimbo-Miwa equation are obtained by the extended homoclinic test method. Its homoclinic breather-wave solution, periodic oscillating soliton and doubly-soliton solution are investigated.
KEYWORDS
PAPER SUBMITTED: 2019-04-24
PAPER REVISED: 2019-06-29
PAPER ACCEPTED: 2019-08-18
PUBLISHED ONLINE: 2020-06-21
DOI REFERENCE: https://doi.org/10.2298/TSCI2004569L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE 4, PAGES [2569 - 2574]
REFERENCES
  1. Yue, Y. F., et al., Localized Waves and Interaction Solutions to An Extended (3+1)-Dimensional Jimbo-Miwa Equation, Appl. Math. Lett., 89 (2019), Mar., pp. 70-77
  2. He, J. S., et al, Generating Mechanism for Higher-order Rouge Waves, Phys. Rev. E, 87 (2013), 052914
  3. Wazwaz, A. M., On Multiple Soliton Solutions for Coupled KdV-mKdV Equations, Non-linear Sci. Lett., 3 (2010), 1, pp. 289-296
  4. Wen, X. Y., Xu, X. G., Multiple Soliton Solutions and Fusion Interaction Phenomena for the (2+1)-Dimensional Modified Dispersive Water-wave System, Appl. Math. Comput., 219 (2013), 14, pp. 7730-7740
  5. Wu, Y., et al., Homotopy Perturbation Method for Non-Linear Oscillators with Coordinate Dependent Mass, Results in Physics, 10 (2018), Sept., pp. 270-271
  6. Wazwaz, A. M., Multiple-Soliton Solutions for Extended (3+1)-Dimensional Jimbo-Miwa Equations, Appl. Math. Lett., 64 (2017), Feb., pp. 21-26
  7. Pang, Q. L., Study on the Behavior of Oscillating Solitons Using the (2+1)-Dimensional Non-linear System, Appl. Math. Comput., 217 (2010), 5, pp. 2015-2023
  8. Li, Z. T., Dai, Z. D., Exact Periodic Cross-kink wave Solutions and Breather Type of Two-solitary Wave Solutions for the (3+1)-Dimensional Potential-YTSF Equation, Computers and Mathematics with Appli-cations, 61 (2011), 8, pp. 1939-1945
  9. Yang, J. Y., Ma, W. X., Abundant Lump-Type Solutions of the Jimbo-Miwa Equation in (3+1)-Dimensions, Computers and Mathematics with Applications, 73 (2017), 2, pp. 220-225
  10. Bai, C. L., New Soliton Structures with Nonpropagating Behavior in Three-Dimensional System, Chaos, Solitons and Fractals, 36 (2008), 2, pp. 253-262
  11. He, J. H., Wu, X. H., Exp-function Method for Non-linear Wave Equations, Chaos, Solitons and Fractals, 30 (2006), 3, pp. 700-708
  12. He, J. H., Homotopy Perturbation Method with Two Expanding Parameters, Indian Journal of Physics, 88 (2014), 2, pp. 193-196
  13. Dai, Z. D., et al, Exact Three-wave Solutions for the KP Equation, Appl. Math. Comput., 216 (2010), 5, pp. 1599-1604
  14. Chen, Y. X., Sech-type and Gaussian-type Light Bullet Solutions to the Generalized (3+1)-Dimensional Cubic-Quintic Schrodinger Equation in PT-Symmetric Potentials, Non-linear Dyn., 79 (2015), 1, pp. 427-436
  15. Lou, S. Y., Lu, J., Special Solutions from Variable Separation Approach: Davey Stewartson Equation, J. Phys. A:Math. Gen., 29 (1996), 14, pp. 4209-4215
  16. Jimbo, M., Miwa, T., Solitons and Infinite Dimensional Lie Algebras, Publ. Res. Inst. Math. Sci., 19 (1983), 3, pp. 943-1001
  17. Dorrizzi, B., et al., Are All the Equations of the Kadomtsev-Petviashvili Hierarchy Integrable?, J. Math. Phys., 27 (1986), pp. 2848-2852
  18. Mei, J. Q., Zhang, H. Q., Symmetry Reductions and Explicit Solutions of A (3+1)-Dimensional PDE, Appl. Math. Comput., 211 (2009), 2, pp. 347-353
  19. Dai, Z. D., et al., Applications of HTA and EHTA to YTSF Equation, Appl. Math. Comput., 207 (2009), 2, pp. 360-364

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence