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With the aid of symbolic computation, some new types of breathing wave solutions 
to a (3+1)-D Jimbo-Miwa equation are obtained by the extended homoclinic test 
method. Its homoclinic breather-wave solution, periodic oscillating soliton and 
doubly-soliton solution are investigated. 
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Introduction 

It is well-known that many important phenomena in thermal science and other fields 

are described by non-linear PDE. With the rapid development of symbolic computation, studies 

on various physical structures of solutions of non-linear evolution equations had attracted much 

attention in connection with the important problems that arise in scientific applications. Soliton, 

multi-soliton or solitary wave, oscillating soliton and breather wave are new types of non-linear 

and localized waves with distinct dynamical and physical characteristics in non-linear systems 

[1]. The high amplitude wave produced during the collision between soliton and breather can be 

used to elaborate the generation mechanism of rouge wave [2]. Multi-soliton or solitary wave 

solutions of non-linear PDE may well describe various phenomena in physics and other fields 

[3-6]. Some oscillating solitons may be considered as a kind of non-propagation solitons [7-10]. 

To find new explicit solutions, some effective methods have been proposed [11-15] and the study 

of non-linear localized waves and interaction solutions among them is one of the important hot 

topics in recent years. 

In this paper, we pay our attention to construct new type periodic oscillating solitons 

of a non-integrable (3+1)-D PDE called Jimbo-Miwa equation [16] in its potential form, i. e.: 

 Hyt – Hxz – 3HxxHy – 3HxyHx – Hxxxy = 0 (1) 

It is known that eq. (1) is non-integrable at any meaning [17]. In [18], by using the 

direct method due to Clarkson and Kruskalthe, Mei and his co-author found the symmetry of 

eq. (1) and some exact solitary-wave solutions were reported. But, as far as we know, it is 

different from the well-known (3+1)-D Jimbo-Miwa equation, no more solutions, especially 

breathers, multi-soliton to eq. (1) has been reported. In this paper, applying the method adopted 
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in [19], we discover some new solutions, such as homoclinic breather-wave solutions and mul-

tiple periodic-soliton solutions to eq. (1). 

New type homoclinic breather wave solutions  

for the (3+1)-D 

In this section, the homoclinic test technique is applied to study eq. (1). Let's begin 

with a Painleve-Backlund transformation: 

 H = H0 + 2(lnφ)x (2) 

where φ = (x, y, z, t) is an arbitrary function of variables x, y, z, and t  to be determined later, 

and H0 – an arbitrary seed solution of eq. (1). Substituting eq. (2) into eq. (1), an identical 

equation of bi-linear form is yielded: 

 3( ) 0y t x z x yD D D D D D      (3) 

where the bi-linear operator D is defined: 
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Then, by choosing test function φ = (x, y, z, t): 

 1 2 1( , , , ) exp( ) cos exp( )x y z t          (4) 

where ηi = aix + biy + ciz + dit + ri, (i = 1, 2) and ai, bi, ci, and di are constants to be determined 
later, ri – the arbitrary constants, and substituting (4) into eq. (3), and equating all the coef-
ficients of exp (–η1), exp (η1), cosη2 and sinη2 to zero yields a set of algebraic equations: 
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Solving the resulting equations simultaneously, we obtain the following set of alge-

braic equations: 

– The first set is: 
2
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Substituting eq. (4) with eq. (5) into eq. (2), gives a periodic breather solitary 
wave solution: 
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with r = ln/(τ/2), where a, b, and τ are arbitrary constants. 

Solution 𝐻1(𝑥, 𝑦, 𝑧, 𝑡) shows a new family of two-wave, breather solitary wave, 
which is a solitary wave in x-z direction and meanwhile is a periodic wave in y-z direction 
whose amplitude periodically oscillates with the evolution of time, see fig. 1(a). 

Taking a = ia, b = ib, and τ = 2 in H1(x, y, z, t), solution H1(x, y, z, t) can be rewritten: 
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where i2 = –1, and a and b are arbitrary real constants. 

Solution H1(x, y, z, t) shows a periodic soliton structure for eq. (1), see fig. 1(b). 

 

Figure 1. (a) The spatial structure of breather wave of H1 with t = 1, (b) the spatial structure of periodic 
soliton of H2 at t = 0.  

– The second set is: 

a1 = –a2 = –a,    b1 = b2 = b,    c1 = c2 = c 
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Then, substituting eq. (4) with eq. (6) into eq. (2), we have another breather type of 

solitary wave solution: 
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where X = ax + cz, r = –ln(τ/2). 

Solution represented by H3 is a periodic kink solitary wave, whose amplitude also 

periodically oscillates with the evolution of time. It shows elastic interaction between a left 

propagation periodic wave and homoclinic wave of different direction, see fig. 2. 

Multiple soliton structure for the (3+1)-D 

In this section, the extended homoclinic test method is applied to study eq. (1). Mul-

tiple soliton structures for the (3+1)-D eq. (1) are derived.  



 

  

Figure 2. The spatial structure of breather wave of H3 

Let's choose the test function: 

 φ(x, y, z, t) = exp(–η1) + kexpt(η1) + mcos(η2) + hcosh(η3) (7) 

 

where ηj = ajx + bjy + cjz + djt, (j = 1, 2, 3).  
Substituting eq. (7) into eq. (3) and equating each corresponding coefficients of  

exp(–η1), exp(η1), cos(η2), sin(η2), cosh(η3), sinh(η3) to zero, yields an algebraic system of  

aj, bj, cj, dj, k, m, and h. Solving the algebraic system simultaneously, we obtain the following 

set of algebraic equations: 
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where a, b, c, m, and h are arbitrary constants.  

Inserting eq. (8) into eq. (7) and eq. (2), a periodic breather two-solitary wave solution 

of eq. (1) is obtained: 
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where η3 = a3x + b3y + c3z + d3t, and ln .r k   

Solution represented by H4(x, y, z, t) shows a new breather two-solitary wave, which 

posses two-solitary wave and meanwhile is a periodic wave whose amplitude periodically os-

cillates with the evolution of time, see fig. 3(a). 

Especially, taking b = ib(i2 = –1) in H4(x, y, z, t), a doubly-soliton structure is derived 

which reads: 
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with η3 = a3x + b3y + c3z + d3t, and a3, b3, c3, and d3 satisfying the following conditions: 
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where a, b, c, m, and h are arbitrary real constants. 

Solution H5(x, y, z, t) shows a multiple kink-solitary wave structure of eq. (1). 
Figure 3 shows a kink soliton interacting with a breather structure, see fig. 3(b). 

 

Figure 3. (a) The spatial structure of breather two-solitary wave of H4(x, y, z, t), (b) the spatial structure 
of multiple kink-solitary wave of H5(x, y, z, t) 

Conclusion 

In this paper, the extended homoclinic test approach is applied to solve a (3+1)-D 

Jimbo-Miwa equation, new exact solutions, such as homoclinic breather-wave solutions and 

doubly periodic wave soliton solutions are obtained. All the presented solutions show the re-

markable richness of the solution space of the (3+1)-D Jimbo-Miwa eq. (1). It is also shown 

that the method is concise and effective, it can be used to treat many other types of non-linear 

evolution equations. 
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