THERMAL SCIENCE

International Scientific Journal

THERMAL APPLICATIONS OF HYBRID PHASE CHANGE MATERIALS: A CRITICAL REVIEW

ABSTRACT
Phase change materials (PCM) with their high latent heat capacity have a great ability to store energy during their phase change process. The PCM are renowned for their applications in solar and thermal energy storage systems for the purpose of heating and cooling. However, one of the major drawbacks of PCM is their low thermal conductivity due to which their charging and discharging time reduces along with the reduction in energy storage capacity. This reduction in the energy storage capacity of PCM can be improved by producing organic-inorganic hybrid form-stable PCM, with the combination of two or more PCM together to increase their energy storage capacity. Nanoparticles that possess high thermal conductivity are also doped with these hybrid PCM (HPCM)to improve the effectiveness of thermal conductivity. This paper presents a short review on the applications of HPCM in energy storage and building application. Apart from this a short section of applications of composite PCM (CPCM) is also reviewed with discussions made at the end of each section. Results from the past literature depicted that the application of these HPCM and CPCM enhanced the energy storage capacity and thermal conductivity of the base PCM and selection of a proper hybrid material plays an essential role in their stability. It is presumed that this study will provide a sagacity, to the readers, to investigate their thermophysical properties and other essential applications.
KEYWORDS
PAPER SUBMITTED: 2019-03-02
PAPER REVISED: 2019-03-28
PAPER ACCEPTED: 2019-03-30
PUBLISHED ONLINE: 2019-04-07
DOI REFERENCE: https://doi.org/10.2298/TSCI190302112T
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Issue 3, PAGES [2151 - 2169]
REFERENCES
  1. H. Ö. Paksoy, Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, Springer Science & Business Media, 234 (2007).
  2. D. Zhou, C.-Y. Zhao, Y. Tian, Review On Thermal Energy Storage With Phase Change Materials (Pcms) in Building Applications, Appl. Energy, 92 (2012), pp. 593–605, doi: 10.1016/j.apenergy.2011.08.025.
  3. R. M. Al Ghossein, M. S. Hossain, J. M. Khodadadi, Experimental Determination of Temperature-Dependent Thermal Conductivity of Solid Eicosane-Based Silver Nanostructure-Enhanced Phase Change Materials for Thermal Energy Storage, Int. J. Heat Mass Transf., 107 (2017), pp. 697–711, doi: 10.1016/j.ijheatmasstransfer.2016.11.059.
  4. A. A. Ranjbar, S. Kashani, S. F. Hosseinizadeh, and M. Ghanbarpour, Numerical Heat Transfer Studies Of A Latent Heat Storage System Containing Nano-Enhanced Phase Change Material, Thermal Science, 15 (2011), pp. 169-181. doi: 10.2298/TSCI100412060R.
  5. A. Sharma, S. K. Kar, Energy sustainability through green energy, Springer ( 2015).
  6. A. A. F. Al-Hamadani and S. K. Shukla, Modelling Of Solar Distillation System With Phase Change Material (PCM) Storage Medium, Thermal Science, 18, (2014), Suppl.2, pp. 347-362.
  7. G. Fang, H. Li, F. Yang, X. Liu, S. Wu, Preparation and Characterization of Nano-Encapsulated N-Tetradecane as Phase Change Material for Thermal Energy Storage, Chem. Eng. J., 153 (2009), 1–3 , pp. 217–221, doi: 10.1016/j.cej.2009.06.019 .
  8. K. Kant, A. Shukla, A. Sharma, Ternary Mixture of Fatty Acids as Phase Change Materials for Thermal Energy Storage Applications, Energy Reports, 2 (2016), pp. 274–279, doi.org/10.1016/S0196-8904(98)00025-9.
  9. S. M. Hasnain, Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials And Techniques, Energy Convers. Manag., 39 (1998), 11, pp. 1127–1138, doi.org/10.1016/j.rser.2010.10.006.
  10. N. Akram et al., Improved Waste Heat Recovery Through Surface Of Kiln Using Phase Change Material, Thermal Science, 22 (2018), 2, pp.1089-1098, doi.org/10.2298/TSCI170611301A.
  11. V. V Tyagi, S. C. Kaushik, S. K. Tyagi, T. Akiyama, Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review, Renew. Sustain. Energy Rev., 15 (2011), 2, pp. 1373–1391, doi.org/10.1016/0038-092X(78)90141-X.
  12. D. J. Morrison, S. I. Abdel-Khalik, Effects of Phase-Change Energy Storage on The Performance of Air-Based and Liquid-Based Solar Heating Systems, Sol. Energy, 20 , 1, pp. 57–67, doi.org/10.1016/0038-092X(89)90013-3.
  13. A. A. Ghoneim, Comparison of Theoretical Models of Phase-Change and Sensible Heat Storage for Air and Water-Based Solar Heating Systems, Sol. Energy, 42 (1989), 3, pp. 209–220, doi.org/10.1016/j.rser.2012.01.058.
  14. R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, A. Elayaperumal, Sustainable Thermal Energy Storage Technologies for Buildings: A Review, Renew. Sustain. Energy Rev., 16 (2012), 5, pp. 2394–2433, doi.org/10.1016/S0196-8904(03)00131-6.
  15. A. M. Khudhair, M. M. Farid, A Review on Energy Conservation In Building Applications with Thermal Storage By Latent Heat Using Phase Change Materials, Energy Convers. Manag., 45 (2004), 2, pp. 263–275, doi.org/10.1016/j.enconman.2015.01.084.
  16. R. K. Sharma, P. Ganesan, V. V Tyagi, H. S. C. Metselaar, S. C. Sandaran, Developments in Organic Solid–Liquid Phase Change Materials and Their Applications In Thermal Energy Storage, Energy Convers. Manag., 95 (2015), pp. 193–228, doi.org/10.1016/j.rser.2012.10.025.
  17. P. Tatsidjodoung, N. Le Pierrès, L. Luo, A Review Of Potential Materials for Thermal Energy Storage in Building Applications, Renew. Sustain. Energy Rev., 18 (2013), pp. 327–349, doi.org/10.1016/j.rser.2012.01.020.
  18. M. Liu, W. Saman, F. Bruno, Review On Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems, Renew. Sustain. Energy Rev.,. 16 (2012), 4, pp. 2118–2132, doi.org/10.1016/j.solener.2008.08.012.
  19. A. Karaipekli, A. Sarı, Capric–Myristic Acid/Vermiculite Composite As Form-Stable Phase Change Material for Thermal Energy Storage, Sol. Energy, 83 (2009), 3, pp. 323–332, doi.org/10.1063/1.2813625.
  20. P. Bonnet, D. Sireude, B. Garnier, O. Chauvet, Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites, Appl. Phys. Lett., 91 (2007), 20, p. 201910, doi.org/10.1063/1.3041495.
  21. J. Wang, H. Xie, Z. Xin, Thermal Properties of Heat Storage Composites Containing Multiwalled Carbon Nanotubes, J. Appl. Phys., 104 (2008) , 11, p. 113537, doi.org/10.1063/1.2903538.
  22. S. Shaikh, K. Lafdi, K. Hallinan, Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials, J. Appl. Phys., 103 (2008), 9, p. 94302, doi.org/10.1016/j.matchemphys.2007.12.016.
  23. A. Sarı, A. Karaipekli, Preparation, Thermal Properties and Thermal Reliability of Capric Acid/Expanded Perlite Composite for Thermal Energy Storage, Mater. Chem. Phys., 109 (2008), 2–3, pp. 459–464, doi.org/10.1016/j.rser.2010.08.007.
  24. L. Fan, J. M. Khodadadi, Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review, Renew. Sustain. Energy Rev., 15 (2011), 1, pp. 24–46, doi.org/10.1016/j.matchemphys.2012.09.058.
  25. G. Fang, H. Li, L. Cao, F. Shan, Preparation And Thermal Properties Of Form-Stable Palmitic Acid/Active Aluminum Oxide Composites as Phase Change Materials For Latent Heat Storage, Mater. Chem. Phys.,. 137 (2012), 2, pp. 558–564, doi.org/10.1016/j.enbuild.2010.04.009.
  26. H. Li, X. Liu, G. Fang, Preparation and Characteristics of N-Nonadecane/Cement Composites as Thermal Energy Storage Materials in Buildings, Energy Build., 42 (2010), 10, pp. 1661–1665, doi.org/10.1016/j.enconman.2003.09.015.
  27. M. M. Farid, A. M. Khudhair, S. A. K. Razack, S. Al-Hallaj, A Review on Phase Change Energy Storage: Materials and Applications, Energy Convers. Manag., 45 (2004), 9–10, pp. 1597–1615, doi.org/10.1016/j.renene.2008.02.026.
  28. A. Shukla, D. Buddhi, R. L. Sawhney, Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials, Renew. Energy, 33 (2008), 12, pp. 2606–2614, doi.org/10.1016/j.rser.2007.10.005.
  29. A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sustain. energy Rev., 13 (2009), 2, pp. 318–345, doi.org/10.1016/j.renene.2008.02.024.
  30. A. Karaipekli, A. Sarı, Capric–Myristic Acid/Expanded Perlite Composite as Form-Stable Phase Change Material for Latent Heat Thermal Energy Storage, Renew. Energy, 33 (2008), 12, pp. 2599–2605, doi.org/10.1016/j.jcis.2009.11.036.
  31. H. Zhang, X. Wang, D. Wu, Silica Encapsulation Of N-Octadecane Via Sol–Gel Process: A Novel Microencapsulated Phase-Change Material with Enhanced Thermal Conductivity and Performance, J. Colloid Interface Sci., 343 (2010), no. 1, pp. 246–255, doi.org/10.1016/j.solmat.2011.02.010
  32. G. Fang, H. Li, Z. Chen, X. Liu, Preparation And Properties Of Palmitic Acid/Sio2 Composites with Flame Retardant as Thermal Energy Storage Materials, Sol. Energy Mater. Sol. Cells, 95 (2011), 7, pp. 1875–1881, doi.org/10.1016/j.solmat.2008.11.057.
  33. A. Sarı, A. Karaipekli, Preparation, Thermal Properties and Thermal Reliability of Palmitic Acid/Expanded Graphite Composite as Form-Stable PCM For Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 93 (2009), 5, pp. 571–576, doi.org/10.1016/j.enconman.2016.12.053.
  34. A. Karaipekli, A. Biçer, A. Sarı, V. V. Tyagi, Thermal Characteristics of Expanded Perlite/Paraffin Composite Phase Change Material with Enhanced Thermal Conductivity using Carbon Nanotubes, Energy Convers. Manag., 134 (2017), pp. 373–381, doi.org/10.1016/j.ensm.2016.10.001.
  35. Y. Zhang, B. Tang, L. Wang, R. Lu, D. Zhao, S. Zhang, Novel Hybrid Form-Stable Polyether Phase Change Materials with Good Fire Resistance, Energy Storage Mater., 6 (2017), pp. 46–52, doi.org/10.1016/j.apenergy.2008.10.020.
  36. W. Wang, X. Yang, Y. Fang, J. Ding, J. Yan, Enhanced Thermal Conductivity and Thermal Performance of Form-Stable Composite Phase Change Materials By Using Β-Aluminum Nitride, Appl. Energy, 86 (2009), 7–8, pp. 1196–1200, doi.org/10.1016/j.solmat.2015.05.003.
  37. Y. Seki, Ş. İnce, M. A. Ezan, A. Turgut, A. Erek, Graphite Nanoplates Loading into Eutectic Mixture of Adipic Acid and Sebacic Acid as Phase Change Material, Sol. Energy Mater. Sol. Cells, 140 (2015), pp. 457–463, doi.org/10.1016/j.energy.2014.05.049.
  38. B. Xu, Z. Li, Paraffin/Diatomite/Multi-Wall Carbon Nanotubes Composite Phase Change Material Tailor-Made for Thermal Energy Storage Cement-Based Composites, Energy, 72 (2014) , pp. 371–380, doi.org/10.1016/j.partic.2013.05.001.
  39. F. Ye, Z. Ge, Y. Ding, J. Yang, Multi-Walled Carbon Nanotubes Added to Na2CO3/Mgo Composites for Thermal Energy Storage, Particuology, 15 (2014), pp. 56–60, doi.org/10.1016/j.solmat.2015.05.045.
  40. F. Tang, D. Su, Y. Tang, G. Fang, Synthesis and Thermal Properties of Fatty Acid Eutectics and Diatomite Composites as Shape-Stabilized Phase Change Materials with Enhanced Thermal Conductivity, Sol. Energy Mater. Sol. Cells, 141 (2015), pp. 218–224, doi.org/10.1016/j.solmat.2011.01.022.
  41. S. Karaman, A. Karaipekli, A. Sarı, A. Bicer, Polyethylene Glycol (PEG)/Diatomite Composite as A Novel Form-Stable Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 95 (2011), 7, pp. 1647–1653, doi.org/10.1016/j.enconman.2003.10.022.
  42. A. Sarı, Form-Stable Paraffin/High Density Polyethylene Composites as Solid–Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties, Energy Convers. Manag., 45 (2004), 13–14, pp. 2033–2042, doi.org/10.1016/j.enbuild.2016.09.022.
  43. D. Su, Y. Jia, G. Alva, F. Tang, G. Fang, Preparation and Thermal Properties Of N–Octadecane/Stearic Acid Eutectic Mixtures with Hexagonal Boron Nitride As Phase Change Materials For Thermal Energy Storage, Energy Build., 131 (2016), pp. 35–41, doi.org/10.1016/j.solmat.2017.09.026.
  44. H. Hong et al., Superwetting Polypropylene Aerogel Supported Form-Stable Phase Change Materials with Extremely High Organics Loading and Enhanced Thermal Conductivity, Sol. Energy Mater. Sol. Cells, 174 (2018), pp. 307–313, doi.org/10.1016/j.enbuild.2016.08.049.
  45. X. Zhang et al., Thermal Conductivity Enhancement of Polyethylene Glycol/Expanded Perlite with Carbon Layer for Heat Storage Application, Energy Build., 130 (2016), pp. 113–121, doi.org/10.1016/j.enbuild.2013.08.006.
  46. A. M. Siddiqui, W. Arshad, H. M. Ali, M. Ali, and M. A. Nasir, Evaluation Of Nanofluids Performance For Simulated Microprocessor., Therm. Sci., 21 (2017), 5, pp.2227-2236, doi.org/10.2298/TSCI150131159S.
  47. H. Babar, M. U. Sajid, and H. M. Ali, “Viscosity of hybrid nanofluids: a critical review,” Thermal Science, 2019, https://doi.org/10.2298/TSCI181128015B
  48. H. M. Ali, M. D. Azhar, M. Saleem, Q. S. Saeed, and A. Saieed, Heat Transfer Enhancement Of Car Radiator Using Aqua Based Magnesium Oxide Nanofluids., Thermal Science, 19 (2015), 6, pp. 2039-2048, doi:10.2298/TSCI150526130A.
  49. M. Pomianowski, P. Heiselberg, Y. Zhang, Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings, Energy Build., 67 (2016), pp. 56–69.
  50. T. Qian, J. Li, X. Min, Y. Deng, W. Guan, L. Ning, Diatomite: A Promising Natural Candidate as Carrier Material for Low, Middle and High Temperature Phase Change Material, Energy Convers. Manag., 98 (2015), pp. 34–45, doi.org/10.1016/j.enconman.2015.03.071.
  51. S. A. Memon, T. Y. Lo, H. Cui, S. Barbhuiya, Preparation, Characterization and Thermal Properties of Dodecanol/Cement as Novel Form-Stable Composite Phase Change Material, Energy Build., 66 (2013), pp. 697–705.
  52. D. Rozanna, A. Salmiah, T. G. Chuah, R. Medyan, S. Y. Thomas Choong, M. Sa ari, A Study on Thermal Characteristics of Phase Change Material (PCM) in Gypsum Board for Building Application, J. Oil Palm Res., 17 (2005), p. 41, doi.org/10.1016/j.enconman.2013.01.027.
  53. A. Biçer , A. Sarı, New Kinds of Energy-Storing Building Composite Pcms for Thermal Energy Storage, Energy Convers. Manag.,. 69 (2013), pp. 148–156, doi.org/10.1111/jace.12504.
  54. C. Li, H. Yang, Expanded Vermiculite/Paraffin Composite as A Solar Thermal Energy Storage Material, J. Am. Ceram. Soc., 96 (2013), 9, pp. 2793–2798, doi.org/10.1016/j.enconman.2014.02.045.
  55. S. Song, L. Dong, S. Chen, H. Xie, C. Xiong, Stearic–Capric Acid Eutectic/Activated-Attapulgiate Composite As Form-Stable Phase Change Material For Thermal Energy Storage, Energy Convers. Manag., 81 (2014), pp. 306–311.
  56. Y. Yuan, T. Li, N. Zhang, X. Cao, X. Yang, Investigation on Thermal Properties of Capric–Palmitic–Stearic Acid/Activated Carbon Composite Phase Change Materials for High-Temperature Cooling Application, J. Therm. Anal. Calorim., 124 (2016), 2, pp. 881–888.
  57. C. Chen, H. Guo, Y. Liu, H. Yue, C. Wang, A New Kind of Phase Change Material (PCM) for Energy-Storing Wallboard, Energy Build., 40 (2008), 5, pp. 882–890,doi.org/10.1016/j.enbuild.2007.07.002.
  58. D. Zhang, Z. Li, J. Zhou, K. Wu, Development of Thermal Energy Storage Concrete, Cem. Concr. Res.,. 34 (2004), 6, pp. 927–934, doi.org/10.1016/j.cemconres.2003.10.022.
  59. P. W. Griffiths, P. C. Eames, Performance of Chilled Ceiling Panels using Phase Change Material Slurries as The Heat Transport Medium, Appl. Therm. Eng., 27 (2007), 10, pp. 1756–1760, doi.org/10.1016/j.applthermaleng.2006.07.009.
  60. P. Principi, R. Fioretti, Thermal Analysis of The Application Of Pcm And Low Emissivity Coating in Hollow Bricks, Energy Build., 51 (2012), pp. 131–142, doi.org/10.1016/j.enbuild.2012.04.022.
  61. K. Pielichowski, K. Flejtuch, Differential Scanning Calorimetry Study of Blends of Poly (Ethylene Glycol) with Selected Fatty Acids, Macromol. Mater. Eng., 288 (2003), 3, pp. 259–264, doi.org/10.1002/mame.200390022.
  62. A. Sarı, Thermal Reliability Test Of Some Fatty Acids as Pcms Used for Solar Thermal Latent Heat Storage Applications, Energy Convers. Manag., 44 (2003), 14, pp. 2277–2287, doi.org/10.1016/S0196-8904(02)00251-0.
  63. M. Kenisarin, K. Mahkamov, Solar Energy Storage using Phase Change Materials, Renew. Sustain. Energy Rev., 11 (2007), 9, pp. 1913–1965, doi.org/10.1016/j.rser.2006.05.005.
  64. O. Mesalhy, K. Lafdi, A. Elgafy, Carbon Foam Matrices Saturated with PCM for Thermal Protection Purposes, Carbon N. Y., 44 (2006), 10, pp. 2080–2088, doi.org/10.1016/j.carbon.2005.12.019.
  65. A. Sarı, C. Alkan, A. Biçer, C. Bilgin, Latent Heat Energy Storage Characteristics of Building Composites of Bentonite Clay and Pumice Sand With Different Organic Pcms, Int. J. Energy Res., 38 (2014), 11, pp. 1478–1491, doi.org/10.1002/er.3185.
  66. T. Nomura, N. Okinaka, T. Akiyama, Impregnation of Porous Material with Phase Change Material for Thermal Energy Storage, Mater. Chem. Phys., 115 (2009), 2–3, pp. 846–850, doi.org/10.1016/j.matchemphys.2009.02.045.
  67. C. Jiao, B. Ji, D. Fang, Preparation and Properties of Lauric Acid–Stearic Acid/Expanded Perlite Composite as Phase Change Materials For Thermal Energy Storage, Mater. Lett., 67 (2012), 1, pp. 352–354, doi.org/10.1016/j.matlet.2011.09.099.
  68. T. Wei, B. Zheng, J. Liu, Y. Gao, W. Guo, Structures and Thermal Properties Of Fatty Acid/Expanded Perlite Composites as Form-Stable Phase Change Materials, Energy Build., 68 (2014), pp. 587–592, doi.org/10.1016/j.enbuild.2013.09.050.
  69. D. Zhang, S. Tian, D. Xiao, Experimental Study on The Phase Change Behavior of Phase Change Material Confined In Pores, Sol. Energy, 81 (2007), 5, pp. 653–660, doi.org/10.1016/j.solener.2006.08.010.
  70. M. Li, H. Kao, Z. Wu, J. Tan, Study on Preparation and Thermal Property Of Binary Fatty Acid and The Binary Fatty Acids/Diatomite Composite Phase Change Materials, Appl. Energy,. 88 (2011), 5, pp. 1606–1612, doi.org/10.1016/j.apenergy.2010.11.001.
  71. B. Xu, Z. Li, Paraffin/Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage, Appl. Energy,. 105 (2013), pp. 229–237, doi.org/10.1016/j.apenergy.2013.01.005.
  72. A. Sarı, A. Biçer, Preparation and Thermal Energy Storage Properties of Building Material-Based Composites As Novel Form-Stable Pcms, Energy Build., 51 (2012), pp. 73–83, doi.org/10.1016/j.enbuild.2012.04.010.
  73. X. Li, J. G. Sanjayan, J. L. Wilson, Fabrication and Stability of Form-Stable Diatomite/Paraffin Phase Change Material Composites, Energy Build., 76 (2014), pp. 284–294, doi.org/10.1016/j.enbuild.2014.02.082.
  74. S. A. Memon, T. Y. Lo, X. Shi, S. Barbhuiya, H. Cui, Preparation, Characterization and Thermal Properties Of Lauryl Alcohol/Kaolin as Novel Form-Stable Composite Phase Change Material for Thermal Energy Storage in Buildings, Appl. Therm. Eng., 59 (2013), 1–2, pp. 336–347, doi.org/10.1016/j.applthermaleng.2013.05.015.
  75. S. Song et al., Lauric Acid/Intercalated Kaolinite as Form-Stable Phase Change Material for Thermal Energy Storage, Energy, 76 (2014), pp. 385–389, doi.org/10.1016/j.energy.2014.08.042.
  76. K. Saltali, A. Sarι, Sorption Capacity and Thermodynamic Properties of Natural Turkish (Reşadiye) Bentonite For The Removal of Ammonium Ions from Aqueous Solution, Adsorpt. Sci. Technol., 24 (2006), 9, pp. 749–760, doi.org/10.1260/026361706781388969.
  77. M. Lachheb, Z. Younsi, H. Naji, M. Karkri, S. Ben Nasrallah, Thermal Behavior of a Hybrid PCM/Plaster: A Numerical and Experimental Investigation, Appl. Therm. Eng., 111 (2017), pp. 49–59, doi.org/10.1016/j.applthermaleng.2016.09.083.
  78. A. Sarı, Thermal Energy Storage Characteristics of Bentonite-Based Composite Pcms with Enhanced Thermal Conductivity as Novel Thermal Storage Building Materials, Energy Convers. Manag., 117 (2016), pp. 132–141, doi.org/10.1016/j.enconman.2016.02.078.
  79. A. Sarı, A. Bicer, A. Karaipekli, F. A. Al-Sulaiman, Preparation, Characterization and Thermal Regulation Performance of Cement Based-Composite Phase Change Material, Sol. Energy Mater. Sol. Cells,. 174 (2018), pp. 523–529, doi.org/10.1016/j.solmat.2017.09.049.
  80. M. Shafie-Khah et al., Optimal Behavior of Responsive Residential Demand Considering Hybrid Phase Change Materials, Appl. Energy, 163 (2016), pp. 81–92, doi.org/10.1016/j.apenergy.2015.11.013.
  81. M. Kheradmand, M. Azenha, J. L. B. de Aguiar, J. Castro-Gomes, Experimental and Numerical Studies of Hybrid PCM Embedded in Plastering Mortar for Enhanced Thermal Behaviour Of Buildings, Energy,. 94 (2017), pp. 250–261, doi.org/10.1016/j.energy.2015.10.131.
  82. M. Kheradmand, M. Azenha, J. L. B. de Aguiar, K. J. Krakowiak, Thermal Behavior of Cement Based Plastering Mortar Containing Hybrid Microencapsulated Phase Change Materials, Energy Build., 84 (2014), pp. 526–536, doi.org/10.1016/j.enbuild.2014.08.010.
  83. M. Kheradmand, M. Azenha, J. Castro-Gomes, J. L. Aguiar, Energy Saving Potential of Cement-Based Mortar Containing Hybrid Phase Change Materials Applied in Building Envelopes, in SCMT4, Fourth International Conference on Sustainable Construction Materials and Technlogies, 2016, pp. 1–10.
  84. L. Krambeck, F. B. Nishida, V. M. Aguiar, P. H. D. Santos, and T. Antonini Alves, Thermal Performance Evaluation Of Different Passive Devices For Electronics Cooling, Thermal Science, https://doi.org/10.2298/TSCI170610300K
  85. R. R. Palappan, A. P. Pasupathy, L. G. Asirvatham, T. Tharayil, and S. Wongwises, Heating And Cooling Capacity Of Phase Change Material Coupled With Screen Mesh Wick Heat Pipe For Thermal Energy Storage Applications,Thermal Science, https://doi.org/10.2298/TSCI180207237P
  86. M. Mastiani, S. S. Sebti, H. Mirzaei, S. Kashani, and A. Sohrabi, Numerical Study Of Melting In An Annular Enclosure Filled With Nanoenhanced Phase Change Material., Thermal Science, 19 (2015), 3, pp. 1067-1076
  87. S. Kashani, E. Lakzian, K. Lakzian, and M. Mastiani, Numerical Analysis Of Melting Of Nanoenhanced Phase Change Material In Latent Heat Thermal Energy Storage System., Thermal Science, 18 (2014), Suppl.2., pp. S335-S345, doi: 10.2298/TSCI111212163K.
  88. S. Harish, D. Orejon, Y. Takata, M. Kohno, Enhanced Thermal Conductivity Of Phase Change Nanocomposite in Solid and Liquid State With Various Carbon Nano Inclusions, Appl. Therm. Eng., 114 (2017), pp. 1240–1246, doi.org/10.1016/j.applthermaleng.2016.10.109.
  89. Y. Cui, C. Liu, S. Hu, X. Yu, The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials, Sol. Energy Mater. Sol. Cells, 95 (2011), 4, pp. 1208–1212, doi.org/10.1016/j.solmat.2011.01.021.
  90. J. Yang et al., Hybrid Network Structure of Boron Nitride And Graphene Oxide in Shape-Stabilized Composite Phase Change Materials with Enhanced Thermal Conductivity And Light-To-Electric Energy Conversion Capability, Sol. Energy Mater. Sol. Cells, 174 (2018), pp. 56–64, doi.org/10.1016/j.solmat.2017.08.025.
  91. B. Tang, C. Wu, M. Qiu, X. Zhang, S. Zhang, PEG/Sio2–Al2O3 Hybrid Form-Stable Phase Change Materials with Enhanced Thermal Conductivity, Mater. Chem. Phys., 144 (2014), 1–2, pp. 162–167, doi.org/10.1016/j.matchemphys.2013.12.036.
  92. M. A. Bashir et al., Performance Investigation Of Photovoltaic Modules By Back Surface Water Cooling., Thermal Science, 22 (2018), 6, pp. 2401-2411.
  93. M. A. Bashir, H. M. Ali, M. Ali, and A. M. Siddiqui, An Experimental Investigation Of Performance Of Photovoltaic Modules In Pakistan, Thermal Science, 19 (2015), 2, pp. S525–S534.
  94. H. M. Ali, M. Mahmood, M. A. Bashir, M. Ali, and A. M. Siddiqui, Outdoor testing of photovoltaic modules during summer in Taxila, Pakistan., Thermal Science, 20 (2016), 1, pp. 165-173 doi: 10.2298/TSCI131216025A.
  95. H. M. Ali, M. A. Zafar, M. A. Bashik, M. A. Nasir, M. Ali, and A. M. Siddiqui, Effect Of Dust Deposition On The Performance Of Photovoltaic Modules In City Of Taxila, Pakistan., Thermal Science, 21 (2017), 2, pp. 915-923, doi.org/10.2298/TSCI140515046A.
  96. Z. Liu, H. Wei, B. Tang, S. Xu, Z. Shufen, Novel Light–Driven CF/PEG/Sio 2 Composite Phase Change Materials with High Thermal Conductivity, Sol. Energy Mater. Sol. Cells, 174 (2018), pp. 538–544, doi.org/10.1016/j.solmat.2017.09.045.
  97. B. Tang, Y. Wang, M. Qiu, S. Zhang, A Full-Band Sunlight-Driven Carbon Nanotube/PEG/Sio2 Composites For Solar Energy Storage, Sol. Energy Mater. Sol. Cells, 123 (2014), pp. 7–12, doi.org/10.1016/j.solmat.2013.12.022.
  98. R. K. Saini et al., Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes, J. Am. Chem. Soc., 125 (2003), 12, pp. 3617–3621, doi: 10.1021/ja021167q.
  99. B. Zhao, H. Hu, R. C. Haddon, Synthesis and Properties Of A Water-Soluble Single-Walled Carbon Nanotube–Poly (M-Aminobenzene Sulfonic Acid) Graft Copolymer, Adv. Funct. Mater., 14 (2004), 1, pp. 71–76, doi.org/10.1002/adfm.200304440.
  100. S. Arepalli et al., Protocol for The Characterization of Single-Wall Carbon Nanotube Material Quality, Carbon N. Y., 42 (2004), 8–9, pp. 1783–1791, doi.org/10.1016/j.carbon.2004.03.038.
  101. M. H. Al-Saleh, U. Sundararaj, A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites, Carbon N. Y., 47 (2009), 1, pp. 2–22, doi.org/10.1016/j.carbon.2008.09.039.
  102. G. A. Gelves, M. H. Al-Saleh, U. Sundararaj, Highly Electrically Conductive and High Performance EMI Shielding Nanowire/Polymer Nanocomposites by Miscible Mixing And Precipitation, J. Mater. Chem., 21 (2011), 3, pp. 829–836, doi 10.1039/C0JM02546A.
  103. D. M. Guldi et al., Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized Swnts, Angew. Chemie, 115 (2003), 35, pp. 4338–4341, doi.org/10.1002/ange.200351289.
  104. M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative Study Of Electromagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites, Carbon N. Y., 50 (2012), 14, pp. 5126–5134, doi.org/10.1016/j.carbon.2012.06.053.
  105. H. K. Moon, S. H. Lee, H. C. Choi, In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes, ACS Nano,2009, 3(2009), 11, pp. 3707–3713, doi: 10.1021/nn900904h.
  106. H. Kataura et al., Optical Properties of Single-Wall Carbon Nanotubes, Synth. Met., 103 (1999), 1–3, pp. 2555–2558, doi.org/10.1016/S0379-6779(98)00278-1.
  107. E. Miyako, H. Nagata, K. Hirano, T. Hirotsu, Carbon Nanotube–Polymer Composite for Light-Driven Microthermal Control, Angew. Chemie Int. Ed.,. 47 (2008), 19, pp. 3610–3613, doi.org/10.1002/anie.200800296.
  108. J. T. McCann, M. Marquez, Y. Xia, Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation Of Solid Materials and Fabrication of Phase Change Nanofibers, Nano Lett., 6 (2006), 12, pp. 2868–2872, doi: 10.1021/nl0620839.
  109. C. Liu, F. Li, L. Ma, H. Cheng, Advanced Materials for Energy Storage, Adv. Mater., 22 (2010), 8, pp. E28–E62, doi.org/10.1002/adma.200903328.
  110. L.-W. Fan et al., Effects of Various Carbon Nanofillers on the Thermal Conductivity and Energy Storage Properties of Paraffin-Based Nanocomposite Phase Change Materials, Appl. Energy, 110 (2013), pp. 163–172, doi.org/10.1016/j.apenergy.2013.04.043.
  111. J. Yang et al., Hybrid Graphene Aerogels/Phase Change Material Composites: Thermal Conductivity, Shape-Stabilization and Light-To-Thermal Energy Storage, Carbon N. Y., 100 (2016), pp. 693–702, doi.org/10.1016/j.carbon.2016.01.063.
  112. B. Tang, M. Qiu, S. Zhang, Thermal Conductivity Enhancement of PEG/Sio2 Composite PCM by In Situ Cu Doping, Sol. energy Mater. Sol. cells, 105 (2012), pp. 242–248, doi.org/10.1016/j.solmat.2012.06.012.
  113. B. Tang, H. Wei, D. Zhao, S. Zhang, Light-Heat Conversion and Thermal Conductivity Enhancement of PEG/Sio2 Composite PCM by In Situ Ti4O7 DopingSol. , Energy Mater. Sol. Cells, 161 (2017), pp. 183–189, doi.org/10.1016/j.solmat.2016.12.003.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence