International Scientific Journal

Authors of this Paper

External Links


The integrated intensity of the central peak is calculated as a function of temperature in the ferroelectric phase (T < TC) of nearly stoichiometric LiTaO3. This calculation is performed using the temperature dependence of the order parameter obtained from the mean field theory at temperatures lower than the transition temperature TC (TC = 963 K) of this crystal. The calculated values of the order parameter (squared) are fitted to the integrated intensity of the central peaks as observed from the Raman and Brillouin scattering experiments as reported in the literature in the ferroelectric phase of nearly stoichiometric LiTaO3. Our results are in good agreement with the observed behavior of LiTaO3 crystal. Because of the applications of LiTaO3 in several academic disciplines including the material science and thermal science, it is beneficial to investigate dynamic properties of this crystal such as the damping constant, inverse relaxation time and the activation energy as also we studied here.
PAPER REVISED: 2017-11-24
PAPER ACCEPTED: 2017-12-04
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Supplement 1, PAGES [S221 - S227]
  1. Gvasaliya, S. N. et al., Neutron and Light Scattering Studies of Nearly Stoichiometric Lithium Tantalate. Ferroelectrics 354 (2007), 1, pp. 63-77.
  2. Voronko, Y. K. et. al., Raman Scattering Study of Phase Transitions in Lithium Niobate and Tantalite. Soviet Physics Solid State 29 (1987), 5, pp. 1348-1355.
  3. Faubel, M., Schlemmer S., A Variable Temperature Bolometer for Determining Particle Energy and Absolute Flux in Molecular-Beams, J. Phys.. E (Sci. Instr.) 21 (1988), 1, pp. 75-79.
  4. Kovar, M., et al., Application of Pyroelectric Properties of LiTaO3 Single Crystal to Microcalorimetric Measurement of the Heat of Adsorption. Appl. Sur. Sci. 74 (1994), 1, 51-59.
  5. Hikita, T., Ferroelectrics and Related Substances, Springer, Berlin, 2001.
  6. Krätzig, E., Schirmer, O. F., PhotorefractiveMaterials and Their Applications, Springer, Berlin, 1988.
  7. Hushur, A.. et al., Ferroelectric Phase Transition of Stoichiometric Lithium Tantalate Studied by Raman, Brillouin, and Neutron Scattering. Phys. Rev. B 76 (2007), 6, pp. 064104-1-8.
  8. Tezuka, Y. et al., Hyper-Raman and Raman Studies on the Phase Transition of Ferroelectric LiTaO3. Phys. Rev. B 49 (1994), 14, pp. 9312-9321.
  9. Zhang, M. S., Scott. J. F., Analysis of Quasielastic Light Scattering in LiTaO3 near TC. Phys. Rev. B 34 (1986), 3, pp. 1880-1883.
  10. Tomeno, I., Elastic Properties of LiTaO3. J. Phys. Soc.Jpn 51 (1982), 9, pp. 2891-2899.
  11. Tomeno, I., Matsumura, S. Dielectric Properties of LiTaO3. Phys. Rev. B 38 (1988), 1, pp. 606- 614.
  12. Johnston, W. D. Jr., Kaminov, I. P., Temperature Dependence of Raman and Rayleigh Scattering in LiNbO3 and LiTaO3. Phys. Rev. 168 (1968), 3, pp. 1045-1054.
  13. Servoin, J. L., Gervais, F., Soft Vibrational mode in LiNbO3 and LiTaO3. Solid State Commun. 31 (1979), 5, pp. 387-391.
  14. Kojima, S., et al., Dielectric Properties of Ferroelectric Lithium Tantalate Crystals Studied by Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. 42 (2003), 1, pp. 6238-6241.
  15. Wiederrecht, G. P., et al.,Explanation of Anomalous Polariton Dynamics in LiTaO3. Phys. Rev. B 51 (1995), 2, 916-931.
  16. Timothy, T. F., et al., Heterodyned Impulsive Stimulated Raman Scattering of Phonon-Polaritons in LiTaO3 and LiNbO3. J. Chem. Phys. 117 (2002), 6, pp. 2882-2896.
  17. Raptis, C., Assignment and Temperature dependence of the Raman Modes of LiTaO3 Studied over the Ferroelectric and Paraelectric Phases. Phys. Rev. B 38 (1988), 14, pp. 10007-10019.
  18. Jayaraman, A., Ballman, A. A., Effect of Pressure on the Raman Modes in LiNbO3 and LiTaO3. J. Appl. Phys. 60 (1986), 3, pp. 1208-1210.
  19. Samuelsen, E. J., Grande, A. P., The Ferroelectric Phase Transition in LiTaO3 Studied by Neutron Scattering. Z. Phys. B 24 (1976), 2, pp. 2017-210.
  20. Abrahams, S. C., et al., Ferroelectric Lithium Tantalate-III. Temperature Dependence of the Structure in the Ferroelectric Phase and the Para-Electric structure at 940 K. J. Phys. Chem. Solids 34 (1973), 3, pp. 521-532.
  21. Penna, A. F., et al., Debye-Like Diffusive Central Mode Near the Phase Transition in Ferroelectric lithium tantalate. Solid State Commun. 19 (1976), 6, pp. 491-494.
  22. Penna, A. F., et al., Anomalous polariton dispersion in LiTaO3 near Tc. Solid State Commun. 23 (1976), 6, pp. 377-380.
  23. Brout, R., Phase Transitions, Benjamin, New York, 1965.
  24. Laulicht, I., The Drastic Temperature Broadening of Hard Mode Raman Lines of Ferroelectric KDP Type Crystals Near Tc. J. Phys. Chem. Sol. 39 (1978), 8, pp. 901-906.
  25. Schaack, G., Winterfeldt, V., Temperature Behaviour of Optical Phonons Near Tc in Triglycine Sulphate and Triglycine Selenate, II. Evidence of Non-Linear Pseudospin-Phonon Interaction. Ferroelectrics 15 (1977), 1, pp. 35-41.
  26. Fahim, M. A., A Detailed IR Study of The Order-Disorder Phase Transition of NaNO2. Thermochimica Acta 363 (2000), 1-2, pp. 121-127.
  27. Rakov, A. V., The Influence of Intermolecular Interaction on Line Width in The Raman Spectra Of Liquids. Optics and Spectroscopy 7 (1959), 1, pp. 128-131.
  28. Bartoli, F. F., Litovitz, T. A., Raman Scattering: Orientational Motions in Liquids. J. Phys. Chem. Sol. 56 (1972), 1, pp. 413-425.

© 2020 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence