International Scientific Journal

External Links


The purpose of present article is to examine the influences of heat and mass fluxes in the magnetohydrodynamic (MHD) flow of Casson nanofluid by an exponentially stretching sheet. Formulation and analysis is presented when thermal radiation and viscous dissipation are taken into account. Transformation technique is adopted for the reduction of PDE systems to ODE systems. Both analytic and numerical solutions of dimensionless velocity, temperature and nanoparticle concentration fields are developed. The impacts of sundry parameters on the velocity, temperature and nanoparticle concentration profiles are plotted and discussed. The values of skin-friction coefficient are obtained numerically. It is found that an increase in the values of Casson parameter reduced the skin-friction coefficient while it enhances for larger Hartman number.
PAPER REVISED: 2016-02-24
PAPER ACCEPTED: 2016-03-03
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 1, PAGES [137 - 145]
  1. Dalir, N., Dehsara, M., Nourazar, S.A., Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet, Energy, 79 (2015), pp. 351-362, DOI:10.1016/
  2. Boyd, J., Buick, J.M., Green, S., Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Boltzmann method, Phys. Fluids, 19 (2007), pp. 93-103,
  3. Hayat, T., Shehzad, S.A., Alsaedi, A., Alhothuali, M.S., Mixed convection stagnation point flow of Casson fluid with convective boundary conditions, Chin. Phys. Lett., 29 (2012), 11, pp. 114704
  4. Mustafa, M., Hayat, T., Pop, I., Hendi, A.A., Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet, Z Naturforsch. A, 67a (2012), pp. 70-76, DOI:10.5560/ZNA.2011-0057
  5. Mukhopadhyay, S., Casson fluid flow and heat transfer over a nonlinearly stretching surface, Chin. Phys. B, 22 (2013), 7, pp. 074701, DOI: 10.1088/1674-1056/22/7/074701
  6. Hayat, T., Farooq, M., Alsaedi, A., Thermally stratified stagnation point flow of Casson fluid with slip conditions, Int. J. Numer. Methods Heat Fluid Flow, 25 (2015), 4, pp. 724-748, DOI:
  7. Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisce, USA, ASME, FED 231/ MD, 66 (1995), pp. 99-105
  8. Buongiorno, J., Convective transport in nanofluids, J. Heat Transfer-Trans. ASME, 128 (2006), 3, pp. 240-250, DOI: 10.1115/1.2150834
  9. Turkyilmazoglu, M., Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chem. Eng. Sci., 84 (2012), pp. 182-187, DOI:10.1016/j.ces.2012.08.029
  10. Ibrahim, W., Shankar, B., Nandeppanavar, M.M., MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet, Int. J. Heat Mass Transfer, 56 (2013), 1-2, pp. 1-9, DOI:10.1016/j.ijheatmasstransfer.2012.08.034
  11. Makinde, O.D., Khan, W.A., Khan, Z.H., Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Transfer, 62 (2013), pp. 526-533, DOI:10.1016/j.ijheatmasstransfer.2013.03.049
  12. Sheikholeslami, M., Ganji, D.D., Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Technology, 253 (2014), pp. 789-796, DOI:10.1016/j.powtec.2013.12.042
  13. Turkyilmazoglu, M., A note on the correspondence between certain nanofluid flows and standard fluid flows, J. Heat Transfer-Trans. ASME, 137 (2015), 2, pp. 024501, DOI: 10.1115/1.4028807
  14. Garoosi, F., Rohani, B., Rashidi, M.M., Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating, Powder Technology, 275 (2015), pp. 304-321, DOI:10.1016/j.powtec.2015.02.015
  15. Zhang, C., Zheng, L., Zhang, X., Chen, G., MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Appl. Math. Modell., 39 (2015), 1, pp. 165-181, DOI:10.1016/j.apm.2014.05.023
  16. Hayat, T., Hussain, T., Shehzad, S.A., Alsaedi, A., Flow of Oldroyd-B fluid with nanoparticles and thermal radiation, Appl. Math. Mech., 36 (2015), 1, pp. 69-80, DOI: 10.1007/s10483-015-1896-9
  17. Hussain, T., Hayat, T., Shehzad, S.A., Alsaedi, A., Chen, B., A model of solar radiation and Joule heating in flow of third grade nanofluid, Z Naturforsch. A, 70 (2015), pp. 177-184.
  18. Sheikholeslami, M., Hatami, M., Domairry, G., Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field, J. Taiwan Inst. Chem. Eng., 46 (2015), pp. 43-50, DOI:10.1016/j.jtice.2014.09.025
  19. Lin, Y., Zheng, L., Zhang, X., Ma, L., Chen, G., MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation, Int. J. Heat Mass Transfer, 84 (2015), pp. 903-911, DOI:10.1016/j.ijheatmasstransfer.2015.01.099
  20. Abbasi, F.M., Hayat, T., Ahmad, B., Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: Applications in drug delivery, J. Mol. Liq., 207 (2015), pp. 248-255, DOI:10.1016/j.molliq.2015.03.042
  21. Turkyilmazoglu, M., Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity, Int. J. Thermal Sci., 50 (2011), 1, pp. 88-96, doi:10.1016/j.ijthermalsci.2010.08.016
  22. Lin, Y., Zheng, L., Zhang, X., Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity, Int. J. Heat Mass Transfer, 77 (2014), pp. 708-716, DOI:10.1016/j.ijheatmasstransfer.2014.06.028
  23. Zheng, L., Zhang, C., Zhang, X., Zhang, J., Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium, Journal of Franklin Institute, 350 (2013), 5, pp. 990-1007, DOI:10.1016/j/jfranklin.2013.01.022
  24. Rashidi, M.M., Ganesh, N.V., Hakeem, A.K.A., Ganga, B., Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, J. Mol. Liq., 198 (2014), pp. 234-238, doi:10.1016/j.molliq.2014.06.037
  25. Shehzad, S.A., Hayat, T., Alsaedi, A., Obid, M.A., Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: A model for solar energy, Appl. Math. Comput., 248 (2014), pp. 273-286, doi:10.1016/j.amc.2014.09.091
  26. Liao, S.J., Homotopy analysis method in nonlinear differential equations, Springer & Higher Education Press, Heidelberg, 2012
  27. Turkyilmazoglu, M., Solution of the Thomas-Fermi equation with a convergent approach, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 11, pp. 4097-4103, DOI:10.1016/j.cnsns.2012.01.030
  28. Hayat, T., Shehzad, S.A., Qasim, M., Obaidat, S., Flow of a second grade fluid with convective boundary conditions, Thermal Sci., 15 (2011), S2, pp. 253-261, DOI: 10.2298/TSCI101014058H
  29. Abbasi, F.M., Shehzad, S.A., Hayat, T., Alsaedi, A., Obid, M.A., Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid, AIP Adv., 5 (2015), 037111, DOI:
  30. Hayat, T., Imtiaz, M., Alsaedi, A., MHD flow of nanofluid with homogenous-hetreogenous reactions and velocity slip, Thermal Sci., DOI: 10.2298/TSCI140922067H

© 2021 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence