International Scientific Journal


In recent years, extreme air temperatures and other weather events are much more common in the territory of Montenegro. These events are result of changes in atmospheric circulation. The main objective of this paper is to examine the connection between air temperature parameters and variability of the East Atlantic Oscillation. The research in the framework of this theme was done using data from 23 meteorological stations for the period 1951-2010, and calculations were done for each season separately. The influence of the East Atlantic Oscillation was tested on 9 parameters of the air temperature in the territory of Montenegro, out of which 6 are climate indices. The obtained results showed that variability of the East Atlantic Oscillation influences the changes of air temperature in Montenegro, both in terms of average values and frequency of extreme events represented by climate indices.
PAPER REVISED: 2017-09-19
PAPER ACCEPTED: 2017-09-25
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 1, PAGES [759 - 766]
  1. World Meteorological Organization, Report of the CCI/CLIVAR expert team on climate change detection, monitoring and indices (ETCCDMI), Geneve, Switzerland, 2004
  2. World Meteorological Organization, Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate Data and Monitoring WCDMP-No. 72, Geneva 2, Switzerland, 2009
  3. IPCC, Summary for Policymakers, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  4. Unkašević, M., Tošić, I., An analysis of heat waves in Serbia, Global and Planetary Change, 65 (2009), 1-2, pp. 17-26, DOI: 10.1016/j.gloplacha.2008.10.009
  5. Cook, B. I., et al., Amplification of the North American "Dust Bowl" drought through human-induced land degradation, Proc. Natl. Acad. Sci., USA, 106 (2009), 13, pp. 4997-5001, DOI: 10.1073/pnas.0810200106
  6. Gajić-Čapka, M., Trendovi oborinskih ekstrema u Crikvenici, 1901-2007 (Trends in indices of precipitation extremes at Crikvenica, 1901-2007), Proceedings, Conference: Modern methods of storm water drainage in urban coastal areas, Rijeka, Croatia, 2009, pp. 166-175
  7. Durão, R. M., et al., Spatial-temporal dynamics of precipitation extremes in southern Portugal: a geostatistical assessment study, Int. J. Climatol., 30 (2010), 10, pp. 1526-1537, DOI: 10.1002/joc.1999
  8. Rahmstorf, S., Coumou, D., Increase of extreme events in a warming world, Proc. Natl. Acad. Sci., USA, 108 (2011), 44, pp. 17905-17909, DOI: 10.1073/pnas.1101766108
  9. Caesar, J., et al., Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971-2005, Int. J. Climatol., 31 (2011), 6, pp. 791-801, DOI: 10.1002/joc.2118
  10. El Kenawy, A. M., et al., Recent trends in daily temperature extremes over northeastern Spain (1960-2006), Nat. Hazards Earth Syst. Sci., 11 (2011), 9, pp. 2583-2603, DOI: 10.5194/nhess-11-2583-2011
  11. Hansen, J., et al., Perception of climate change, Proc. Natl. Acad. Sci., USA, 109 (2012), 37, E2415-E2423, DOI: 10.1073/pnas.1205276109
  12. Mihajlović, J., et al., Tornadic waterspout event in Split (Croatia) - analysis of meteorological environment, Journal of the Geographical Institute "Jovan Cvijić" SASA, 66 (2016), 2, pp. 185-202, DOI: DOI:10.2298/IJGI1602185M
  13. Mihajlović J., Analysis of a non-supercell tornado in Sombor, Journal of the Geographical Institute "Jovan Cvijić" SASA, 67 (2017), 2, pp. 115-133, DOI:
  14. Burić, D., et al., Recent extreme air temperature changes in Montenegro, Glasnik Srpskog geografskog drustva, 95 (2015), 4, pp. 53-66, DOI: 10.2298/GSGD140626002B
  15. Smith, T. M., Reynolds, R. W., A global merged land and sea surface temperature reconstruction based on historical observations (1880-1997), Journal of Climate, 18 (2005), 12, pp. 2021-2036, DOI: 10.1175/JCLI3362.1
  16. Brohan, P., et al., Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850, Journal of Geophysical Research, 111 (2006), D12106, pp 1-11, DOI: 10.1029/2005JD006548
  17. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  18. Ducić, V., Radovanović, M., Klima Srbije, Zavod za udžbenike i nastavna sredstva, Belgrade, Serbia, 2005
  19. Efthymiadis, D., et al., Trends in Mediterranean gridded temperature extremes and large-scale circulation influences, Nat. Hazards Earth Syst. Sci., 11 (2011), 8, pp. 2199-2214, DOI: 10.5194/nhess-11-2199-2011
  20. Unkašević, M., Tošić, I., The maximum temperatures and heat waves in Serbia during the summer of 2007, Climatic Change, 108 (2011), 1-2, pp. 207-223, DOI: 10.1007/s10584-010-0006-4
  21. Ducić, V., et al., Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types, Nat. Hazards Earth Syst. Sci., 12 (2012), 3, pp. 687-697, DOI: 10.5194/nhess-12-687-2012
  22. Doderovic, M. M., Buric, D. B., Atlantic Multi-decadal Oscillation and changes of summer air temperature in Montenegro, Thermal Science, 19 (2015), 2, pp. 405-414, DOI: 10.2298/TSCI150430115D
  23. Milenković, M., et al., The North Atlantic Oscillation (NAO) and the water temperature of the Sava river in Serbia, Journal of the Geographical Institute "Jovan Cvijić" SASA, 67 (2017), 2, pp. 135-144, DOI:
  24. Barnston, A. G., Livezey, R. E., Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Wea. Rev., 115 (1987), 6, pp. 1083-1126, DOI: 10.1175/1520-0493(1987)115
  25. Woollings, T., Blackburn, M., The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns, J. Climate, 25 (2012), 3, pp. 886-902, DOI: 10.1175/JCLI-D-11-00087.1
  26. Moore, G. W. K., Renfrew, I. A., Cold European winters: interplay between the NAO and the East Atlantic mode, Atmospheric Science Letters, 13 (2012), 1, pp. 1-8, DOI: 10.1002/asl.356
  27. Szentimrey, T., Multiple analysis of series for homogenization (MASH); Verification procedure for homogenized time series, Report, Fourth Seminar for Homogenization and Quality Control in Climatological Databases, WCDMP-No. 56 WMO-TD No. 1236, Budapest, Hungary; 2003, pp. 193-201
  28. Sheridan, S., Lee, C. C., Synoptic climatology and the analysis of atmospheric teleconnections, SAGE journals, 36 (2012), 4, pp. 548-557, DOI: 10.1177/0309133312447935
  29. Unkašević, M., Tošić, I., Trends in temperature indices over Serbia: relationships to large-scale circulation patterns. Int. J. Climatol., 33 (2013), 15, pp. 3152-3161, DOI: 10.1002/joc.3652.
  30. Nesterov, E. S., East Atlantic oscillation of the atmospheric circulation, Russ. Meteorol. and Hydrol., 34 (2009), 12, pp. 794-800, DOI: 10.3103/S1068373909120048
  31. Knežević, S., et al., The influence of the East Atlantic Oscillation to climate indices based on the daily minimum temperatures in Serbia, Theoretical & Applied Climatology, 116 (2014), 3-4, pp. 435-446, DOI: 10.1007/s00704-013-0959-0
  32. Lean, J. L., Rind, D. H., How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett., 35 (2008), 18, L18701, doi:10.1029/2008GL034864

© 2021 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence