## THERMAL SCIENCE

International Scientific Journal

### CHARACTERISTIC EQUATION METHOD FOR FRACTAL HEAT-TRANSFER PROBLEM VIA LOCAL FRACTIONAL CALCULUS

**ABSTRACT**

In this paper the fractal heat-transfer problem described by the theory of local fractional calculus is considered. The non-differentiable-type solution of the heat-transfer equation is obtained. The characteristic equation method is proposed as a powerful technology to illustrate the analytical solution of the partial differential equation in fractal heat transfer.

**KEYWORDS**

PAPER SUBMITTED: 2015-12-05

PAPER REVISED: 2016-01-15

PAPER ACCEPTED: 2016-01-26

PUBLISHED ONLINE: 2016-09-24

**THERMAL SCIENCE** YEAR

**2016**, VOLUME

**20**, ISSUE

**Supplement 3**, PAGES [S751 - S754]

- Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Academic Press, New York, USA, 2015
- Jafari, H., et al., A Decomposition Method for Solving Diffusion Equations Via Local Fractional Time Derivative, Thermal Science, 19 (2015), Suppl. 1, pp. S123-S129
- Yang, X. J., et al., A New Numerical Technique for Solving the Local Fractional Diffusion Equation: Two-Dimensional Extended Differential Transform Approach, Applied Mathematics and Computation, 274 (2016), Feb., pp. 143-151
- Yang, X. J., et al., Fractal Boundary Value Problems for Integral and Differential Equations with Local Fractional Operators, Thermal Science, 19 (2015), 2, pp. 959-966
- Xu, S., et al., A Novel Schedule for Solving the Two-Dimensional Diffusion Problem in Fractal Heat Transfer, Thermal Science, 19 (2015), Suppl. 1, pp. S99-S103
- Yang, X. J., et al., Local Fractional Homotopy Perturbation Method for Solving Fractal Partial Differential Equations Arising in Mathematical Physics, Romanian Reports in Physics, 67 (2015), 3, pp. 752-761
- Yang, X. J., et al., Local Fractional Similarity Solution for the Diffusion Equation Defined on Cantor Sets, Applied Mathematical Letters, 47 (2015), Sep., pp. 54-60
- Yang, X. J., Srivastava, H. M., An Asymptotic Perturbation Solution for a Linear Oscillator of Free Damped Vibrations in Fractal Medium Described by Local Fractional Derivatives, Communications in Nonlinear Science and Numerical Simulation, 29 (2015), 1, pp. 499-504
- Jassim, H. K., et al., Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets Within Local Fractional Operators, Mathematical Problem in Engineering, 2015 (2015), ID 309870
- Yang, X. J., et al., Initial-Boundary Value Problems for Local Fractional Laplace Equation Arising in Fractal Electrostatics, Journal of Applied Nonlinear Dynamics, 4 (2015), 3, pp. 349-356
- Yan, S. P., et al., Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation Within Local Fractional Operators, Advances in Mathematical Physics, 2014 (2014), ID 161580
- Zhang, Y., et al., Local Fractional Variational Iteration Algorithm II for Non-Homogeneous Model Associated with the Non-Differentiable Heat Flow, Advances in Mechanical Engineering, 7 (2015), 10, pp. 1-7
- Yang, A. M., et al., The Yang-Fourier Transforms to Heat-Conduction in a Semi-Infinite Fractal Bar, Thermal Science, 17 (2013), 3, pp. 707-713
- Baleanu, D., et al., Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets, Progress in Fractional Differentiation and Applications, 1 (2015), 1, pp. 1-11
- Ahmad, J., et al., Analytic Solutions of the Helmholtz and Laplace Equations by Using Local Fractional Derivative Operators, Waves, Wavelets and Fractals: Adv. Anal., 1 (2015), 1, pp. 22-26
- Jia, Z., et al., Local Fractional Differential Equations by the Exp-Function Method, International Journal of Numerical Methods for Heat & Fluid Flow, 25 (2015), 8, pp. 1845-1849
- Zhao, C. G., et al., The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative, Abstract Applied Analysis, 2014 (2014), ID 386459
- Zhao, D., et al., Some Fractal Heat-Transfer Problems with Local Fractional Calculus, Thermal Science, 19 (2015), 5, pp.1867-1871
- Srivastava, H. M., et al., A Novel Computational Technology for Homogeneous Local Fractional PDEs in Mathematical Physics, Applied and Computational Mathematics, 2016, in press